Research
 Publications
We want to be a part of the scientific community by contributing our research results to international conferences and journals.
Introduction
Publishing enables us to collaborate and learn from the broader scientific community. Below you find a number of papers presented at international conferences and published in renowned journals sorted by date, topics and conferences.
| 2025 | 
|---|
| 2025  Yumeng Li, William Beluch, Margret Keuper, Dan Zhang, Anna Khoreva (2025). VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis. PDF  | 
| 2025  Alexander Timans, Christoph-Nikolas Straehle*, Kaspar Sakmann, Christian Nasseth, Eric Nalisnick (2025). Max-Rank: Efficient Multiple Testing for Conformal Prediction. PDF  | 
| 2025  He, Y., Xiong, B., Hernández, D., Zhu, Y., Kharlamov, E. & Staab, S. (2025). DAGE: DAG Query Answering via Relational Combinator with Logical Constraints. WWW. PDF  | 
| 2025  Flynn, H. & Reeb, D. (2025). Tighter Confidence Bounds for Sequential Kernel Regression. AISTATS. PDF  | 
| 2025  Zhou, D., Kharlamov, E. & Kostylev, E.V. (2025). GLoRa: A Benchmark to Evaluate the Ability to Learn Long-Range Dependencies in Graphs. ICLR.  | 
| 2025  Zhu, Y., Potyka, N., Pan, J., Xiong, B., He, Y., Kharlamov, E. & Staab, S. (2025). Conformalized Answer Set Prediction for Knowledge Graph Embedding. NAACL. PDF  | 
| 2024 | 
|---|
| 2024  Akinwande, V., Jiang, Y., Sam, D. & Kolter, J. Z. (2024). Understanding prompt engineering may not require rethinking generalization. ICLR. PDF  | 
| 2024  Baek, C., Kolter, J. Z. & Raghunathan, A. (2024). Why is SAM Robust to Label Noise? ICLR. PDF  | 
| 2024  Beik-Mohammedi, H., Hauberg, S., Arvanitidis, G., Figueroa, N., Neumann, G. & Rozo, L. (2024). Neural Contractive Dynamical Systems. PDF  | 
| 2024  Bini, M., Roth, K., Akata, Z. & Khoreva, A. (2024). ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections. ICML. PDF  | 
| 2024  Cheng, Z., Hao, Z., Xiaoqiang, W., Huang, J., Wu, Y., Liu, X., Zhao, Y., Songming, L. & Su, H. (2024). Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations. ICML. PDF  | 
| 2024  Chen, Q., Luo, W., Huang, Z., Lin, T., Wang, X., Soylu, A., Ell, B., Zhou, B., Kharlamov, E. & Cheng, G. (2024). ACORDAR 2.0: A Test Collection for Ad Hoc Dataset Retrieval with Densely Pooled Datasets and Question-Style Queries. SIGIR.  | 
| 2024  Eiter, T., Geibinger, T., Ruiz, N.H., Musliu, N., Oetsch, J., Pfliegler, D. & Stepanova, D. (2024). Adaptive large-neighbourhood search for optimisation in answer-set programming. AIJ. PDF  | 
| 2024  Ensinger, K., Tagliapietra, N., Ziesche, S. & Trimpe, S. (2024). Exact Inference for Continuous-Time Gaussian Process Dynamics. PDF  | 
| 2024  Ensinger, K., Ziesche, S. & Trimpe, S. (2024). Learning Hybrid Dynamics Models with Simulator-Informed Latent States. PDF  | 
| 2024  Hoffmann, D., Schrodi, S., Behrmann, N., Fischer, V. & Brox, T. (2024). Eureka-Moments in Transformers: Multi-Step Tasks Reveal Softmax Induced Optimization Problems. ICML. PDF  | 
| 2024  He, Y., Murata, N., Lai, C., Takida, Y., Uesaka, T., Kim, D., Liao, W., Mitsufuji, Y., Kolter, J., Z., Salakhutdinov R. & Ermon, S. (2024). Manifold Preserving Guided Diffusion. ICLR. PDF  | 
| 2024  Huang, H., Peng, S., Zhang, D. & Geiger, A. (2024). Renovating Names in Open-Vocabulary Segmentation Benchmarks. NeurIPs. PDF   | 
| 2024  Jaquier, N., Rozo, L., González-Duque, M., Borovitskiy, V. & Asfour, T. (2024). Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic manifolds. ICML. PDF  | 
| 2024  Jazbec, M., Forré, P., Mandt, S., Zhang, D. & Nalisnick, E. (2024). Early-Exit Neural Networks with Nested Prediction Sets. UAI. PDF  | 
| 2024  Jazbec, M., Timans, A., Hadži Veljković, T., Sakmann, K., Zhang, D., Naesseth, C. & Nalisnick, E. (2024). Fast yet Safe: Early-Exiting with Risk Control. NeurIPs. PDF  | 
| 2024  Jiang, Y., Baek, C. & Kolter, J. Z. (2024). On the Joint Interaction of Models, Data, and Features. ICLR. PDF  | 
| 2024  Kälble, J., Wirges, S., Tatarchenko, M. & Ilg, E. (2024). Accurate Training Data for Occupancy Map Prediction in Automated Driving Using Evidence Theory. PDF   | 
| 2024  Koch, S., Vaskevicius, N., Colosi, M., Hermosilla, P & Ropinski, T. (2024). Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds with Queryable Objects and Open-Set Relationships. CVPR. PDF  | 
| 2024  Li, Y., Keuper, M., Zhang, D. & Khoreva, A. (2024). Adversarial Supervision Makes Layout-to-Image Diffusion Models Thrive. ICLR. PDF   | 
| 2024  Mai, H. T., Chu, C. X. & Paulheim, H. (2024). Do LLMs Really Adapt to Domains? An Ontology Learning Perspective. ISWC. PDF  | 
| 2024  Maini, P., Goyal, S., Lipton, Z., Kolter, J. Z. & Raghunathan, A. (2024). T-MARS: Improving Visual Representations by Circumventing Text Feature Learning. ICLR. PDF  | 
| 2024  Öcal, B. M., Tatarchenko, M., Karaoğlu, S. & Gevers, T. (2024). SceneTeller: Language-to-3D Scene Generation. ECCV. PDF  | 
| 2024  Pan, C., Yaman, B., Nesti, T., Mallik, A., Allievi, A., Velipasalar, S. & Ren, L. (2024). VLP: Vision Language Planning for Autonomous Driving. CVPR. PDF  | 
| 2024  Pan, C., Yaman, B., Velipasalar, S. & Ren, L. (2024). CLIP-BEVFormer: Enhancing Multi-View Image-Based BEV Detector with Ground Truth Flow. CVPR. PDF  | 
| 2024  Pan, J., Falkener, S., Berkenkamp, F. & Vanschoren, J. (2024). MALIBO: Meta-learning for Likelihood-free Bayesian Optimization. ICML. PDF  | 
| 2024  Potyka, N., Zhu, Y., He, Y., Kharlamov, E. & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. AAMAS. PDF  | 
| 2024  Schneider, M., Krug, R., Vaskevicius, N., Palmieri, L. & Boedecker, J. (2024). The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning. NeurIPs.  | 
| 2024  Schrader, T., Lange, L., Razniewski, S. & Friedrich, A. (2024). QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios. EMNLP. PDF  | 
| 2024  Sokota, S., Farina, G., Wu, D., Hu, W., Wang, K., Kolter, J. Z. & Brown, N. (2024). The Update Equivalence Framework for Decision-Time Planning. ICLR. PDF  | 
| 2024  Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. (2024). A Simple and Effective Pruning Approach for Large Language Models. ICLR. PDF  | 
| 2024  Tebbe, J., Zimmer, C., Steland, A., Lange-Hegermann, M. & Mies, F. (2024). Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning. AISTATS.  | 
| 2024  Tighineanu, P., Grossberger, L., Baireuther, P., Skubch, K., Falkner, S., Vinogradska, J. & Berkenkamp, F. Scalable (2024). Meta-Learning with Gaussian Processes. AISTATS. PDF  | 
| 2024  Wang, J., Laube, K. A., Li, Y., Hendrik Metzen, J., Cheng, S., Borges, J. & Khoreva, A. (2024). Label-free Neural Semantic Image Synthesis. ECCV.  | 
| 2024  Yunjie, H., Hernandez, D., Nayyeri, M., Xiong, B., Yuqicheng, Z., Kharlamov, E. & Staab, S. (2024). Generating SROI Ontologies via Knowledge Graph Query Embedding Learning. ECAI. PDF  | 
| 2024  Yuqicheng, Z., Nico, P., Nayyeri, M., Xiong, B., Yu, H., Kharlamov, E. & Staab, S. (2024). Predictive Multiplicity of Knowledge Graph Embeddings in Link Prediction. EMNLP. PDF   | 
| 2024  Zhai, R., Liu, B., Risteski, A., Kolter, J. Z. & Ravikumar, P. (2024). Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression. ICLR. PDF  | 
| 2024  Zhao, H., Yang, B., Cen, Y., Ren, J., Zhang, C., Dong, Y., Kharlamov, E., Zhao, S. & Tang, J. (2024). Pre-Training and Prompting for Few-Shot Node Classification on Text-Attributed Graphs. KDD.  | 
| 2024  Zhang, M., Gautam, V., Wang, M., Alabi, J., Shen, X., Klakow, D & Mosbach, M. (2024). The Impact of Demonstrations on Multilingual In-Context Learning: A Multidimensional Analysis. ACL. PDF  | 
| 2024  Zhuang, Z., Nicolae, M. & Fritz, M. (2024). Stealthy Imitation: Reward-guided Environment-free Policy Stealing. ICML. PDF  | 
| 2023 | 
|---|
| 2023  Andresel, M., Kien, T., Domokos, C., Minervini, P. & Stepanova, D. (2023). Combining Inductive and Deductive Reasoning for Query Answering over Incomplete Knowledge Graphs. CIKM  | 
| 2023  Beik-Mohammadi, H., Hauberg, S., Arvanitidis, G., Neumann, G. & Rozo, L. (2023). Reactive Motion Generation on Learned Riemannian Manifolds. IJRR. PDF  | 
| 2023  Bitzer, M., Meister, M. & Zimmer, C. (2023). Amortized Inference for Gaussian Process Hyperparameters of Structured Kernels. UAI.  | 
| 2023  Bitzer, M., Meister, M. & Zimmer, C. (2023). Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems. AISTATS.  | 
| 2023  Bjerke, M., Schott, L., Jensen, C., Battistin, C., Klindt, D. & Dunn, B. (2023). Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles. ICLR. PDF  | 
| 2023  Carlini, N., Kolter, J. Z., Tramer, F., Dvijotham, K. D., Rice, L. & Sun, M. (2023). (Certified!!) Adversarial Robustness for Free!. ICLR. PDF  | 
| 2023  Chen, B., Zhang, J., Zhang, X., Dong, Y., Song, J., Zhang, P., Xu, K., Kharlamov, E. & Tang, J. (2023). GCCAD: Graph Contrastive Coding for Anomaly Detection. TKDE.  | 
| 2023  Chu, C., Gad-Elrab, M., Tran, T., Schiller, M., Kharlamov, E. & Stepanova D. (2023) Supplier Optimization at Bosch with Knowledge Graphs and Answer Set Programming. ESWC.  | 
| 2023  Chubanov, S. (2023). On the complexity of PAC learning in Hilbert spaces. AAAI.  | 
| 2023  Cui, P., Zhang, D., Deng, Z., Dong, Y. & Zhu, J. (2023). Learning Sample Difficulty from Pre-trained Models for Reliable Prediction. NeurIPS. PDF  | 
| 2023  Cohen, L., Mansour, Y. & Moshkovitz, M. (2023).Finding Safe Zones of Markov Decision Processes Policies. NeurIPS. PDF  | 
| 2023  De Avila Belbute-Peres, F. & Kolter, J. Z. (2023). Simple initialization and parametrization of sinusoidal networks via their kernel bandwidth. ICLR. PDF  | 
| 2023  Ensinger, K., Ziesche, S., Rakitsch, B., Tiemann, M. & Trimpe, S. (2023). Combining Slow and Fast: Complementary Filtering for Dynamics Learning. AAAI.  | 
| 2023  Flynn, H., Reeb, D., Kandemir, M. & Peters, J. (2023). PAC-Bayes Bounds for Bandit Problems: A Survey and Experimental Comparison. TPAMI. PDF  | 
| 2023  Flynn, H., Reeb, D., Kandemir, M. & Peters, J. (2023). Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures. NeurIPS. PDF  | 
| 2023  Gao, N., Ngo, V.A., Ziesche, H. & Neumann, G. (2023). SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects. CoRL. PDF  | 
| 2023  Gruner, T., Belousov, B., Muratore, F., Palenicek, D. & Peters, J. (2023). Pseudo-Likelihood Inference. NeurIPS.  | 
| 2023  He, Y., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E. & Staab, S. (2023). Can Pattern Learning Enhance Complex Logical Query Answering?. ISWC.  | 
| 2023  Hou, Z., He, Y., Cen, Y., Liu, X., Dong, Y., Kharlamov, E. & Tang, J. (2023). GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner. WWW.  | 
| 2023  Huang, H., Geiger, A. & Zhang, D. (2023). GOOD: Exploring geometric cues for detecting objects in an open world. ICLR. PDF  | 
| 2023  Hung, C., Willmott, D. & Kolter, J. Z.(2023). TADA - Efficient Task-Agnostic Domain Adaptation for Transformers. ACL.  | 
| 2023  Ismaeil, Y., Stepanova, D., Kien, T. & Bloeckeel, H. (2023). Feabi: A Feature Selection-based Framework for Interpreting Knowledge Graph Embeddings. ISWC.  | 
| 2023  Jazbec, M., Allingham, J., Zhang, D. & Nalisnick, E. (2023): Towards Anytime Classification in Early-Exit Architectures by Enforcing Conditional Monotonicity. NeurIPs. PDF  | 
| 2023  Klironomos, A., Zhou, B., Tan, Z., Zheng, Z., Mohamed, G., Paulheim, H. & Kharlamov, E. (2023). ExeKGLib: Knowledge Graphs-Empowered Machine Learning Analytics. ESWC.  | 
| 2023  Lange, L., Stroetgen, J., Adel, H. & Klakow, D. (2023). Multilingual Normalization of Temporal Expressions with Masked Language Models. EACL.  | 
| 2023  Li, A., Qiu, C., Kloft, M., Smyth, P., Mandt, S. & Rudolph, M. (2023). Deep anomaly detection under labeling budget constraints. ICML. PDF.  | 
| 2023  Li, A., Qiu, C., Kloft, M., Smyth, P., Mandt, S. & Rudolph, M. (2023). Zero-Shot Batch-Level Anomaly Detection. NeurIPS. PDF.  | 
| 2023  Li, Y., Zhang, D., Keuper, M. & Khoreva, A. (2023). Intra-Source Style Augmentation for Improved Domain Generalization.WACV. PDF  | 
| 2023  Li, Y., Zhang, D., Keuper, M. & Khoreva, A. (2023). Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain Generalization. IJCV.  | 
| 2023  Luis, C. E., Bottero, A. G., Vinogradska, J., Berkenkamp, F., & Peters, J. (2023). Model-Base Uncertainty in Value Functions. AISTATS.  | 
| 2023  Mai, T., Ismaeil, Y., Tran, T., Blockeel, H. & Stepanova, D. (2023). Look beyond the Surface: A Demo for Explaining Knowledge Graph Embeddings and Entity Similarity. ISWC.  | 
| 2023  Metzen, J., Hutmacher, R., Hua, N., Boreiko, V., & Zhang, D.(2023). Identification of Systematic Errors of Image Classifiers on Rare Subgroups. ICCV.  | 
| 2023  Mohan, R., Elsken, T., Zela, A., Metzen, J. H., Staffler, B., Brox, T., Valada, A. & Hutter, F. (2023). Neural Architecture Search for Dense Prediction Tasks in Computer Vision. IJCV.  | 
| 2023  Müller, J., Radev, S., Schmier, R., Draxler, F., Rother, C. & Koethe, U. (2023). Finding Competence Regions in Domain Generalization. TMLR. PDF  | 
| 2023  Nurlanov, Z., Schmidt, F. R. & Bernard, F. (2023). Universe Points Representation Learning for Partial Multi-Graph Matching. AAAI. PDF  | 
| 2023  Ott, K., Tiemann, M, Hennig, P. & Briol, F. (2023). Bayesian Numerical Integration with Neural Networks. UAI. PDF  | 
| 2023  Ott, K., Betz, P., Stepanova, D., Gad-Elrab, M., Meilicke, C. & Stuckenschmidt, H. (2023). Rule-based Knowledge Graph Completion with Canonical Models. CIKM.  | 
| 2023  Qiu, Z., Liu, W., Feng, H., Xue, Y., Feng, Y., Liu, Z., Zhang, D., Weller, A. & Schölkopf, B. (2023). Controlling Text-to-Image Diffusion by Orthogonal Finetuning. NeurIPs. PDF  | 
| 2023  Rauch, C., Long, R., Ivan, V. & Vijayakumar, S. (2023). Sparse-Dense Motion Modelling and Tracking for Manipulation Without Prior Object Models. ICRA.  | 
| 2023  Reeb, D., Patel, K., Barsim, K., Schiegg, M. & Gerwinn, S. (2023). Validation of Composite Systems by Disrepancy Propagation. UAI. PDF  | 
| 2023  Schmier, R., Köthe, U. & Straehle, C. (2023). Positive Difference Distribution for Image Outlier Detection using Normalizing Flows and Contrastive Data. PDF  | 
| 2023  Schoenfeld, E., Borges, J., Schiele, B. & Khoreva, A. (2023) Discovering Class-Specific GAN Controls for Semantic Image Synthesis. CPR workshop for "Generative Models for Computer Vision”. PDF  | 
| 2023  Schroeder de Witt, C., Sokota, S., Kolter, J. Z., Foerster, J. N. & Strohmeier, M. (2023). Perfectly Secure Steganography Using Minimum Entropy Coupling. ICLR. PDF  | 
| 2023  Seligmann, F., Becker, P., Volpp, M. & Neumann, G. (2023). Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift. NeurIPs. PDF  | 
| 2023  Shala, G., Elsken, T., Hutter, F. & Grabocka, J. (2023). Transfer NAS with Meta-learned Bayesian Surrogates. ICLR. PDF  | 
| 2023  Sokota, S., D'Orazio, R., Kolter, J. Z., Loizou, N., Lanctot, M., Mitliagkas, J., Brown, N. & Kroer, C. (2023). A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games. ICLR. PDF  | 
| 2023  Song, Y., Keller, T., Sebe, N. & Welling, M. (2023). Flow Factorized Representation Learning. NeurIPS. PDF  | 
| 2023  Sushko, V., Zhang, D. , Gall, J. & Khoreva, A. (2023). One-Shot Synthesis of Images and Segmentation Masks. WACV. PDF  | 
| 2023  Sushko, V., Wang, R. & Gall, J. (2023). Smoothness Similarity Regularization for Few-Shot GAN Adaptation. ICCV  | 
| 2023  Tan, Z., Zhou, B., Zheng, Z., Savkovic, O., Huang, Z., Grangel Gonzalez, I., Soylu, A. & Kharlamov, E. (2023). Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring: A Bosch Case. ISWC.  | 
| 2023  Tan, Z., Zheng, Z., Klironomos, A., Gad-Elrab, M., Xiao, G., Soylu, A., Kharlamov, E. & Zhou, B. Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring. ISWC.  | 
| 2023  Taranovic, A., Kupcsik, A. G., Freymuth, N. & Neumann, G. (2023). Adversarial Imitation Learning with Preferences. ICLR. PDF  | 
| 2023  Tatarchenko, M. & Rambach, K. (2023). Histogram-based Deep Learning for Automotive Radar. PDF  | 
| 2023  Trockman, A., Willmott, D.& Kolter, J. Z. (2023). Understanding the Covariance Structure of Convolutional Filters. ICLR. PDF  | 
| 2023  Veseli, B., Singhania, S., Razniewski, S. & Weikum, G. (2023). Evaluating Language Models for Knowledge Base Completion. ESWC. PDF  | 
| 2023  Volpp, M., Dahlinger, P., Becker, P., Daniel, C.& Neuma, G. (2023). Accurate Bayesian Meta-Learning by Accurate Task Posterior Inference. ICLR. PDF  | 
| 2023  Wang, M., Adel, H., Lange, L., Strötgen, J. & Schütze, H. (2023). GradSim: Gradient-Based Language Grouping for Effective Multilingual Training. EMNLP.  | 
| 2023  Wang, X., Cheng, G., Pan, J., Kharlamov, E.& Qu, Y. (2023). BANDAR: Benchmarking Snippet Generation Algorithms for (RDF) Dataset Search. TKDE  | 
| 2023  Yatsura, M., Sakmann, K., Hua, N. G., Hein, M. & Metzen, J. H. (2023). Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation. ICLR. PDF  | 
| 2023  Zhai, R., Dan, C., Kolter, J. Z.& Ravikumar, P. K. (2023). Understanding Why Generalized Reweighting Does Not Improve Over ERM. ICLR. PDF  | 
| 2023  Zhang, D., Zhu, Y., Dong, Y., Wang, Y., Feng, W., Kharlamov, E. & Tang, J. (2023). ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation. WWW.  | 
| 2023  Zhang, F., Liu, X., Tang, J., Dong, Y., Yao, P., Zhang, J., Gu, X., Wang, Y., Kharlamov, E., Shao, B., Li, R. & Wang, K. (2023). OAG: Linking Entities Across Large-Scale Heterogeneous Knowledge Graphs. TKDE.  | 
| 2023  Zheng, Z., Zhou, B., Tan, Z., Savkovic, O., Rincon-Yanez, D., Nikolov, N., Roman, D., Soylu, A. & Kharlamov, E. (2023). Semantic Cloud System for Scaling Data Science Solutions for Welding at Bosch. ISWC.  | 
| 2023  Zheng, Z., Savkovic, O., Nikolov, N., Luu, H., Soylu, A., Kharlamov, E. & Zhou, B. (2023). Datalog with External Machine Learning Functions for Automated Cloud Resource Configuration. ISWC.  | 
| 2023  Zhou, B., Nikolov, N., Zheng, Z., Luo, X., Savkovic, O., Roman, D., Soylu, A. & Kharlamov, E. (2023). Scaling Data Science Solutions with Semantics and Machine Learning: Bosch Case. ISWC.  | 
| 2023  Zhu, Y., Potyka, N., Xiong, B., Tran, T., Nayyeri, M., Staab, S. & Kharlamov, E. (2023). Towards Statistical Reasoning with Ontology Embeddings. ISWC.  | 
| 2023  Ziesche, H. & Rozo, L. (2023). Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies. NeurIPS.  | 
| 2022 | 
|---|
| 2022  Anil, C., Pokle, A., Liang, K., Treutlein, J., Wu, Y., Bai, S., Kolter, J. Z., & Grosse, R. B. (2022). Path Independent Equilibrium Models Can Better Exploit Test-Time Computation. NeurIPS.  | 
| 2022  Adrian, D., Kupcsik, A., Spies, M., & Neumann H. (2022). Efficient and Robust Training of Dense Object Nets for Multi-Object Robot Manipulation. ICRA.  | 
| 2022  Arnaout, H., Tran, T.-K., Stepanova, D., Gad-Elrab, M.H., Razniewski, S., & Weikum G. (2022). Utilizing Language Models for Knowledge Graph Repair. WWW.  | 
| 2022  Baek, C., Jiang, Y., Raghunathan, A., & Kolter, J. Z. (2022). Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift. NeurIPS.  | 
| 2022  Bai, S., Koltun, V., & Kolter, J. Z. (2022). Neural Deep Equilibrium Solvers. ICLR.  | 
| 2022  Bansal, A., Stoll, D., Janowski, M., Zela, A., & Hutter, F. (2022). JAHS-Bench-201: A foundation for research on joint architecture and hyperparameter search. NeurIPS. PDF  | 
| 2022  Bitzer, M., Meister, M., & Zimmer, C. (2022). Structural Kernel Search via Bayesian Optimization and Symbolical Optimal Transport. NeurIPS.  | 
| 2022  Bottero, A. G., Luis, C. E., Vinogradska, J., Berkenkamp, F. & Peters, J. (2022). Information Theoretic Safe Exploration with Gaussian Processes. NeurIPS.  | 
| 2022  Di Castro, S., Mannot, S., & Di Castro, D. (2022). Analysis of Stochastic Processes through Replay Buffers. ICML.  | 
| 2022  Duffhauss, F., Ngo, A. V., Ziesche, H., & Neumann, G. (2022). FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion. ECCV.  | 
| 2022  Eiter, T., Geibinger, T., Higuera, N., Musliu, N., Oetsch, J., & Stepanova, D. (2022). Large-Neighbourhood Search for Optimisation in Answer-Set Solving. AAAI.  | 
| 2022  Eiter, T., Geibinger, T., Musliu, N., Oetsch, N. J., & Stepanova, D. (2022). Answer-Set Programming for Lexicographical Makespan Optimisation in Parallel Machine Scheduling. AAAI.  | 
| 2022  Eiter, T., Geibinger, T., Musliu, N., Oetsch, N. J., & Stepanova D. (2022). ALASPO: An Adaptive Large-Neighbourhood ASP Optimiser. KR.  | 
| 2022  Feng, W., Dong, Y., Tinglin, H., Yin, Z., Cheng, X., Kharlamov, E., & Tang, J. (2022). GRAND+: Scalable Graph-based Semi-Supervised Learning with Better Generalization. WWW.  | 
| 2022  Ferreira, F., Nierhoff, T., Sälinger, A., & Hutter, F. (2022). Learning synthetic environments and reward networks for reinforcement learning. ICLR. PDF  | 
| 2022  Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., & Hutter, F. (2022). Auto-sklearn 2.0: Hands-free automl via meta-learning. JMLR. PDF  | 
| 2022  Freymuth, N., Schreiber, N., Taranovic, A., Becker, P., & Neumann, G. (2022). Inferring Versatile Plans from Demonstrations by Matching Geometric Features. CoRL. PDF  | 
| 2022  Fröhlich, L., Lefarov, M., Zeilinger, M., & Berkenkamp, F. (2022). On-Policy Model Errors in Reinforcement Learning. ICLR. PDF  | 
| 2022  Gao, N., Ziesche, H., Vien, N.A., Volpp, M., & Neumann G. (2022). What Matters For Meta-Learning Vision Regression Tasks?. CVPR.  | 
| 2022  Geiger, P., & Straehle, C.-N. (2022). Fail-Safe Adversarial Generative Imitation Learning. TMLR. PDF  | 
| 2022  Goyal, S., Sun, M., Raghunathan, A., & Kolter, J. Z. (2022). Test Time Adaptation via Conjugate Pseudo-labels. NeurIPS. PDF  | 
| 2022  Graf, C., Adrian, D. B., Weil, J., Gabriel, M., Schillinger, P., Spies, M., Neumann, H., & Kupcsik, A. G. (2022). Learning Dense Visual Descriptors using Image Augmentations for Robot Manipulation Tasks. CoRL. PDF  | 
| 2022  Ho, V. T., Stepanova, D., Milchevski, D., Stroetgen, J., & Weikum, G. (2022). Enhancing Knowledge Bases with Quantity Facts. WWW.  | 
| 2022  Hoffmann, D. T., Behrmann, N., Gall, J., Brox, T., & Noroozi, M. (2022). Ranking Info Noise Contrastive Estimation: Boosting Contrastive Learning via Ranked Positives. AAAI.  | 
| 2022  Jiang, Y., Liu, E. Z., Eysenbach, B., Kolter, J. Z., & Finn, C. (2022). Learning Options via Compression. NeurIPS.  | 
| 2022  Jiang, Y., Nagarajan, V., Baek, C., & Kolter, J. Z. (2022). Assessing Generalization of SGD via Disagreement. ICLR.  | 
| 2022  Kosman, E., & Di Castro, D. (2022). GraphVid: It Only Takes a Few Nodes to Understand a Video. ECCV. PDF  | 
| 2022  Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., & Hutter, F. (2022). Nas-bench-suite-zero: Accelerating research on zero cost proxies. NeurIPS. PDF  | 
| 2022  Levinkov, E., Kardoost, A., Andres, B., & Keuper M. (2022). Higher-Order Multicuts for Geometric Model Fitting and Motion Segmentation. TPAMI.  | 
| 2022  Li, C. Y., Rakitsch, B., & Zimmer, C. (2022). Safe Active Learning for Multi-Output Gaussian Processes. AISTATS.  | 
| 2022  Lin, T., Chen, Q., Cheng, G., Soylu, A., Ell, B., Zhao, R., Shi, Q., Wang, X., Gu, Y., & Kharlamov, E. (2022). ACORDAR: A Test Collection for Ad Hoc Content-Based (RDF) Dataset Retrieval. SIGIR.  | 
| 2022  Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., & Hutter, F. (2022). Smac3: A versatile bayesian optimization package for hyperparameter optimization. JMLR. PDF  | 
| 2022  Lindinger, J., Rakitsch, B., & Lippert, C. (2022). Laplace Approximated Gaussian Process State-Space Models. UAI. PDF  | 
| 2022  Liu, X., Hong, H., Wang, X., Chen, Z., Kharlamov, E., Dong, Y., & Tang, J. (2022). SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs. WWW.  | 
| 2022  Look, A., Rakitsch, B., Kandemir, M., & Peters, J. (2022). A Deterministic Approximation to Neural SDEs. PAMI.  | 
| 2022  Lovisotto, G., Finnie, N., Munoz, M., Mummadi, C. K., & Metzen, J. H. (2022). Give Me Your Attention: Dot-Product Attention Considered Harmful for Adversarial Patch Robustness. CVPR.  | 
| 2022  Maini, P., Garg, S., Lipton, Z. C., & Kolter, J. Z. (2022). Characterizing Datapoints via Second-Split Forgetting. NeurIPS.  | 
| 2022  Manek, G., & Kolter, J. Z. (2022). The Pitfalls of Regularization in Off-Policy TD Learning. NeurIPS.  | 
| 2022  Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Safari, M., Yu, K., & Hutter, F. (2022). Nas-bench-suite: Nas evaluation is (now) surprisingly easy. ICLR. PDF  | 
| 2022  Moskalev, A., Sosnovik, I., Fischer, V., & Smeulders, A. (2022). Contrasting quadratic assignments for set-based representation learning. ECCV. PDF  | 
| 2022  Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., & Hutter, F. (2022). Transformers can do bayesian inference. ICLR. PDF  | 
| 2022  Nonnenmacher, M., Pfeil, T., Steinwart, I., & Reeb, D. (2022). SOSP: Efficiently Capturing Global Correlations by Second-Order Structured Pruning. ICLR.  | 
| 2022  Nonnenmacher, M., Oldenburg, L., Steinwart, I., & Reeb, D. (2022). Utilizing Expert Features for Contrastive Learning of Time-Series Representations. ICML.  | 
| 2022  Öztürk, E., Ferreira, F., Jomaa, H., Schmidt-Thieme, L., Grabocka, J., & Hutter, F. (2022). Zero-shot automl with pretrained models. ICML. PDF  | 
| 2022  Otto, F., Celik, O., Zhou, H., Ziesche, H., Ngo, A. V., & Neumann, G. (2022). Deep Black-Box Reinforcement Learning with Movement Primitives. CoRL. PDF  | 
| 2022  Pokle, A., Geng, Z., & Kolter, J. Z. (2022). Deep Equilibrium Approaches to Diffusion Models. NeurIPS.  | 
| 2022  Pujari, S., Strötgen, J., Giereth, M., Gertz, M., & Friedrich, A. (2022). Three Real-World Datasets and Neural Computational Models for Classification Tasks in Patent Landscaping. EMNLP.  | 
| 2022  Pujari, S., Mantiuk, F., Giereth, M., Stroetgen, J., & Friedrich, A. (2022). Evaluating Neural Multi-Field Document Representations for Patent Classification. BIR.  | 
| 2022  Qiu, C., Kloft, M., Mandt, S., & Rudolph, M. (2022). Raising the bar in graph-level anomaly detection. IJCAI.  | 
| 2022  Qiu, C., Li, A., Kloft, M., Rudolph, M., & Mandt, S. (2022). Latent Outlier Exposure for Anomaly Detection with Contaminated Data. ICML. PDF  | 
| 2022  Saseendran, A., Skubch, K., & Keuper, M. (2022). Trading off Image Quality for Robustness is not Necessary with Deterministic Autoencoders. NeurIPS.  | 
| 2022  Schirmer, M., Eltayeb, M., Lessmann, S., & Rudolph, M. (2022). Modeling Irregular Time Series with Continuous Recurrent Units. ICML. PDF  | 
| 2022  Sepliarskaia, A., Moskalev, A., Sosnovik, I., & Smeulders, A. (2022). LieGG: Studying learned Lie group generators. NeurIPS. PDF  | 
| 2022  Shi, Z., Wang, Y., Zhang, H., Kolter, J. Z., & Hsieh, C. (2022). Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation. NeurIPS.  | 
| 2022  Sokota, S., Hu, H., Wu, D. J., Kolter, J. Z., Foerster, J. N., & Brown, N. (2022). A Fine-Tuning Approach to Belief State Modeling. ICLR.  | 
| 2022  Sushko, V., Schoenfeld, E., Zhang, D., Gall, J., Schiele, B., & Khoreva, A. (2022). OASIS: Only Adversarial Supervision for Semantic Image Synthesis. IJCV.  | 
| 2022  Tighineanu, P., Skubch, K., Baireuther, P., Reiss, A., Berkenkamp, F., & Vinogradska, J. (2022). Transfer Learning with Gaussian Processes for Bayesian Optimization. AISTATS.  | 
| 2022  Wei, C. & Kolter, J. Z. (2022). Certified Robustness for Deep Equilibrium Models via Interval Bound Propagation. ICLR.  | 
| 2022  Wöhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). IJCAI.  | 
| 2022  Xiong, B., Potyka, N., Tran, T., Nayyeri, M., & Staab, S. (2022). Faithful Embeddings for EL++ Knowledge Bases. ISWC.  | 
| 2022  Yildiz, C., Kandemir, M., & Rakitsch, B. (2022). Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs. NeurIPS.  | 
| 2022  Youmna, I., Stepanova, D., Tran, T., Saranrittichai, P., Domokos, C., & Blockeel, H. (2022). Towards Neural Network Interpretability Using Commonsense Knowledge Graphs. ISWC.  | 
| 2022  Zela, A., Siems, J. N., Zimmer, L., Lukasik, J., Keuper, M., & Hutter, F. (2022). Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks. ICLR. PDF  | 
| 2022  Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh, C., & Kolter, J. Z. (2022). General Cutting Planes for Bound-Propagation-Based Neural Network Verification. NeurIPS.  | 
| 2022  Zhang, J., Beik-Mohammadi, H., & Rozo, L. (2022). Learning Riemannian Stable Dynamical Systems via Diffeomorphisms. CoRL. PDF  | 
| 2021 | 
|---|
| 2021  Behrmann, N., Gall, J., & Noroozi, M. (2021). Unsupervised Video Representation Learning by Bidirectional Feature Prediction. WACV. [Pdf]  | 
| 2021  Chen, H., Deng, S., Zhang, W., Xu, Z., Li, J., & Kharlamov, E. (2021). Neural symbolic reasoning with knowledge graphs: Knowledge extraction, relational reasoning, and inconsistency checking. Fundamental Research, 1(5), 565–573. PDF  | 
| 2021  Chowdhury, S. N., Wickramarachchi, R., Gad-Elrab, M. H., Stepanova, D., & Henson, C. A. (2021). Towards Leveraging Commonsense Knowledge for Autonomous Driving. ISWC. PDF  | 
| 2021  Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., & Talwalkar, A. (2021). Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. ICLR. [Pdf]  | 
| 2021  Di Castro, S. S., Mannor, S., & Di Castro, D. (2021). Sim and Real: Better Together. NeurIPS. [Pdf]  | 
| 2021  Donti, P. L., Agarwal, A., Bedmutha, N. V., Pileggi, L., & Kolter, J. Z. (2021). Adversarially robust learning for security-constrained optimal power flow. NeurIPS. [Pdf]  | 
| 2021  Donti, P. L., Roderick, M., Fazlyab, M., & Kolter, J. Z. (2021). Enforcing robust control guarantees within neural network policies. ICLR. [Pdf]  | 
| 2021  Donti, P. L., Rolnick, D., & Kolter, J. Z. (2021). DC3: A learning method for optimization with hard constraints. ICLR. [Pdf]  | 
| 2021  Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skočovský, P. & Stepanova, D. (2021). Answer-Set Programming for Lexicographical Makespan Optimisation in Parallel Machine Scheduling. KR. PDF  | 
| 2021  Fayyaz, M., Bahrami Rad, E., Diba, A., Noroozi, M., Adeli, E., Van Gool, L., & Gall, J. (2021). 3D CNNs with Adaptive Temporal Feature Resolutions. CVPR. [Pdf]  | 
| 2021  Franke, J. K. H., Koehler, G., Biedenkapp, A., & Hutter, F. (2021). Sample-Efficient Automated Deep Reinforcement Learning. ICLR. [Pdf]  | 
| 2021  Garcia, V., Hoogeboom, E., Fuchs, F., Posner, I., & Welling, M. (2021). E(n) Equivariant Normalizing Flows. NeurIPS. [Pdf]  | 
| 2021  Grünewald, S., Piccirilli, P., & Friedrich, A. (2021). Coordinate Constructions in Enhanced Universal Dependencies: Analysis and Computational Modeling. EACL. [Pdf]  | 
| 2021  Gurumurthy, S., Bai, S., Manchester, Z., & Kolter, J. Z. (2021). Joint inference and input optimization in equilibrium networks. NeurIPS. [Pdf]  | 
| 2021  Haussmann, M., Gerwinn, S., Look, A., Rakitsch, B., & Kandemir, M. (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. AISTATS. [Pdf]  | 
| 2021  Hedderich, M. A., Lange, L., Adel, H., Stroetgen, J., & Klakow, D. (2021). A Survey on Recent Approaches for Natural Language Processing in Low-Resource Scenarios. NAACL. [Pdf]  | 
| 2021  Huang, Y., Zhang, H., Shi, Y., Kolter, J. Z., & Anandkumar, A. (2021). Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds. NeurIPS. [Pdf]  | 
| 2021  Huang, Z., Bai, S., & Kolter, J. Z. (2021). (Implicit)^2: Implicit Layers for Implicit Representations. NeurIPS. [Pdf]  | 
| 2021  Isele, S. T., Schilling, M. P., Klein, F. E., Saralajew, S., & Zoellner, J. M. (2021). Radar Artifact Labeling Framework (RALF): Method for Plausible Radar Detections in Datasets. Vehits. [Pdf]  | 
| 2021  Jain, N., Tran, T. K., Gad-Elrab, M. H. & Stepanova, D. (2021). Improving Knowledge Graph Embeddings with Ontological Reasoning. ISWC. PDF  | 
| 2021  Keller, T. A., & Welling, M. (2021). Topographic VAEs learn equivariant capsules. NeurIPS.  | 
| 2021  Kumar Mummadi, C., Subramaniam, R., Hutmacher, R., Vitay, J., Fischer, V., & Metzen, J. H. (2021). Does enhanced shape bias improve neural network robustness to common corruptions? ICLR. [Pdf]  | 
| 2021  Metzen, J. H., & Yatsura, M. (2021). Efficient Certified Defenses Against Patch Attacks on Image Classifiers. ICLR. [Pdf]  | 
| 2021  Oren, J., Ross, C., Lefarov, M., Richter, F., Taitler, A., Feldman, Z., Daniel, C., & Di Castro, D. (2021). SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems. SOCS. [Pdf]  | 
| 2021  Ott, K., Katiyar, P., Hennig, P., & Tiemann, M. (2021). ResNet After All: Neural ODEs and Their Numerical Solution. ICLR. [Pdf]  | 
| 2021  Otto, F., Becker, P., Ngo, V. A., Ziesche, H. C., & Neumann, G. (2021). Differentiable Trust Region Layers for Deep Reinforcement Learning. ICLR. [Pdf]  | 
| 2021  Pabbaraju, C., Winston, E., & Kolter, J. Z. (2021). Estimating Lipschitz constants of monotone deep equilibrium models. ICLR. [Pdf]  | 
| 2021  Patel, K., Beluch, W., Rambach, K., Cozma, A., Pfeiffer, M., & Yang, B. (2021). Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra. IEEE Radar Conference. PDF  | 
| 2021  Patel, K., Beluch, W., Yang, B., Pfeiffer, M., & Zhang, D. (2021). Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning. ICLR. [Pdf]  | 
| 2021  Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., & Rudolph, M. (2021). Neural Transformation Learning for Deep Anomaly Detection Beyond Images. ICML. [Pdf]  | 
| 2021  Rice, L., Bair, A., Zhang, H., & Kolter, J. Z. (2021). Evaluating the spectrum of classifier robustness. NeurIPS. [Pdf]  | 
| 2021  Rudenko, A., Palmieri, L., Doellinger, J., Lilienthal, A. J., & Arras, K. O. (2021). Learning Occupancy Priors of Human Motion From Semantic Maps of Urban Environments. IEEE Robotics and Automation Letters, 6(2), 3248–3255. [Pdf]  | 
| 2021  Saseendran, A., Skubch, K., Falkner, S., & Keuper, M. (2021). Shape your Space: A Gaussian Mixture Regularization Approach to Deterministic Autoencoders. NeurIPS. [Pdf]  | 
| 2021  Schoenfeld, E., Sushko, V., Zhang, D., Gall, J., Schiele, B., & Khoreva, A. (2021). You Only Need Adversarial Supervision for Semantic Image Synthesis. ICLR. [Pdf]  | 
| 2021  Sokota, S., Ho, C., Ahmad, Z. F., & Kolter, J. Z. (2021). Monte Carlo Tree Search With Iteratively Refining State Abstractions. NeurIPS. [Pdf]  | 
| 2021  Spector, O., & Di Castro, D. (2021). InsertionNet - A Scalable Solution for Insertion. RA-L. [Pdf]  | 
| 2021  Trockman, A., & Kolter, J. Z. (2021). Orthogonalizing Convolutional Layers with the Cayley Transform. ICLR. [Pdf]  | 
| 2021  Volpp, M., Fluerenbrock, F., Grossberger, L., Daniel, C., & Neumann, G. (2021). Bayesian Context Aggregation for Neural Processes. ICLR. [Pdf]  | 
| 2021  Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J., & Kolter, J. Z. (2021). Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. NeurIPS.[Pdf]  | 
| 2021  Wong, E., & Kolter, J. Z. (2021). Learning perturbation sets for robust machine learning. ICLR. [Pdf]  | 
| 2021  Yatsura, M., Metzen, J. H., & Hein, M. (2021). Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks. NeurIPS. [Pdf]  | 
| 2021  Zaidi, S., Zela, A., Elsken, T., Holmes, C., Hutter, F., & Teh, Y. W. (2021). Neural Ensemble Search for Uncertainty Estimation and Dataset Shift. NeurIPS. [Pdf]  | 
| 2021  Zhai, R., Dan, C., Suggala, A., Kolter, J. Z., & Ravikumar, P. K. (2021). Boosted CVaR Classification. NeurIPS. [Pdf]  | 
| 2021  Zhao, J., Dong, Y., Ding, M., Kharlamov, E., & Tang, J. (2021). Adaptive Diffusion in Graph Neural Networks. NeurIPS. [Pdf]  | 
| 2020 | 
|---|
| 2020  Bai, S., Koltun, V., & Kolter, Z. (2020). Multiscale Deep Equilibrium Models. NeurIPS. [Pdf]  | 
| 2020  Becker, P., Arenz, O., & Neumann, G. (2020). Expected Information Maximization: Using the I-Projection for Mixture Density Estimation. ICLR. [Pdf]  | 
| 2020  Chubanov, S. (2020a). A polynomial algorithm for convex quadratic optimization subject to linear inequalities. Discrete Applied Mathematics, 275, 19–28. [Pdf]  | 
| 2020  Chubanov, S. (2020b). A scaling algorithm for optimizing arbitrary functions over vertices of polytopes. Mathematical Programming, para. 1. [Pdf]  | 
| 2020  Curi, S., Berkenkamp, F., & Krause, A. (2020). Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS. [Pdf]  | 
| 2020  De Avila Belbute-Peres, F., Economon, T., & Kolter, Z. (2020). Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction. ICML. [Pdf]  | 
| 2020  Dvijotham, K., Hayes, J., Balle, B., Kolter, Z., Qin, C., Gyorgy, A., Xiao, K., Gowal, S., & Kohli, P. (2020). A Framework for Robustness Certification of Smoothed Classifiers Using F-Divergences. ICLR. [Pdf]  | 
| 2020  Elsken, T., Staffler, B., Metzen, J. H., & Hutter, F. (2020). Meta-Learning of Neural Architectures for Few-Shot Learning. CVPR. [Pdf]  | 
| 2020  Etesami, J., & Geiger, P. (2020, April). Causal Transfer for Imitation Learning and Decision Making under Sensor-Shift. Proceedings of the AAAI Conference on Artificial Intelligence, 10118–10125. [Pdf]  | 
| 2020  Fathony, R., & Kolter, J. Z. (2020). AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning. AISTATS. [Pdf]  | 
| 2020  Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Kharlamov, E., & Tang, J. (2020). Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS. [Pdf]  | 
| 2020  Forssell, H., Kharlamov, E., & Thorstensen, E. (2020). On Equivalence and Cores for Incomplete Databases in Open and Closed Worlds. ICDT. [Pdf]  | 
| 2020  Friedrich, A., Adel, H., Tomazic, F., Benteau, R., Hingerl, J., Marusczyk, A., & Lange L. (2020). The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain. ACL. [Pdf]  | 
| 2020  Fröhlich, L., Klenske, E., Vinogradska, J., Daniel, C., & Zeilinger, M. (2020). Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization. AISTATS. [Pdf]  | 
| 2020  Fuchs, F. B., Worrall, D. E., Fischer, V., & Welling, M. (2020). SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurIPS. [Pdf]  | 
| 2020  Gad-Elrab, M. H., Stepanova, D., Tran, T.-K., Adel, H., & Weikum, G. (2020). ExCut: Explainable Embedding-based Clustering over Knowledge Graphs. ISWC. [Pdf]  | 
| 2020  Gargiani, M., Zanelli, A., Dinh, Q. T., Diehl, M., & Hutter, F. (2020). Transferring Optimality Across Data Distributions via Homotopy Methods. ICLR. [Pdf]  | 
| 2020  Grünewald, S., & Friedrich, A. (2020). RobertNLP at the IWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Parsing for English. International Conference on Parsing Technologies and the IWPT 2020, 245. [Pdf]  | 
| 2020  Gulshad, S., & Smeulders, A. (2020). Explaining with Counter Visual Attributes and Examples. ICMR. [Pdf]  | 
| 2020  Hewing, L., Arcari, E., Froehlich, L., & Zeilinger, M. (2020). On Simulation and Trajectory Prediction with Gaussian Process Dynamics. L4DC. [Pdf]  | 
| 2020  Hoogeboom, E., Garcia, V., Tomczak, J., & Welling, M. (2020). The Convolution Exponential and Generalized Sylvester Flows. NeurIPS. [Pdf]  | 
| 2020  Jaquier, N., & Rozo, L. (2020). High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds. NeurIPS. [Pdf]  | 
| 2020  Jaquier, N., Rozo, L., Caldwell, D. G., & Calinon, S. (2020). Geometry-aware manipulability learning, tracking, and transfer. The International Journal of Robotics and Research, 40(2-3), 624–650. [Pdf]  | 
| 2020  Kalayci, E. G., Gonzalez, I. G., Loesch, F., Xiao, G., Mehdi, A. U., Kharlamov, E., & Calvanese, D. (2020). Semantic Integration of Bosch Manufacturing Data Using Virtual Knowledge Graphs. ISWC. [Pdf]  | 
| 2020  Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Schober, M., & Hennig, P. (2020). Differentiable Likelihoods for Fast Inversion of “Likelihood-Free” Dynamical Systems. ICML. [Pdf]  | 
| 2020  Kipf, T., van der Pol, E., & Welling, M. (2020). Contrastive Learning of Structured World Models. ICLR. [Pdf]  | 
| 2020  Klenske, E.D. Optimal test pooling for efficient PCR testing of SARS-CoV2. Ir J Med Sci (2020). [Pdf]  | 
| 2020  Kugele, A., Pfeil, T., Pfeiffer, M., & Chicca, E. (2020). Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks. Frontiers in Neuroscience, 14, 1–13. [Pdf]  | 
| 2020  Lange, L., Adel, H., & Stroetgen, J. (2020a). Closing the Gap: Joint De-Identification and Concept Extraction in the Clinical Domain. ACL. [Pdf]  | 
| 2020  Lange, L., Adel, H., & Stroetgen, J. (2020b). On the Choice of Auxiliary Languages for Improved Sequence Tagging. Workshop on Representation Learning for NLP (RepL4NLP-2020). [Pdf]  | 
| 2020  Lange, L., Iurshina, A., Adel, H., & Stroetgen, J. (2020). Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions from Text. Workshop on Representation Learning for NLP (RepL4NLP-2020). [Pdf]  | 
| 2020  Li, J., Cheng, G., Liu, Q., Zhang, W., Kharlamov, E., Gunaratna, K., & Chen, H. (2020). Neural Entity Summarization with Joint Encoding and Weak Supervision. IJCAI. [Pdf]  | 
| 2020  Li, S., Huang, Z., Cheng, G., Kharlamov, E., & Gunaratna, K. (2020). Enriching Documents with Compact, Representative, Relevant Knowledge Graphs. IJCAI. [Pdf]  | 
| 2020  Lindinger, J., Reeb, D., Lippert, C., & Rakitsch, B. (2020). Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties. NeurIPS. [Pdf]  | 
| 2020  Ling, C. K., Fang, F., & Kolter, Z. (2020). Deep Archimedean Copulas. NeurIPS. [Pdf]  | 
| 2020  Liu, Q., Chen, Y., Cheng, G., Kharlamov, E., Li, J., & Qu, Y. (2020). Entity Summarization with User Feedback. ESWC. [Pdf]  | 
| 2020  Maini, P., Wong, E., & Kolter, Z. (2020). Adversarial Robustness Against the Union of Multiple Threat Models. ICML. [Pdf]  | 
| 2020  McClelland, J. L., Hill, F., Rudolph, M., Baldridge, J., & Schütze, H. (2020). Placing Language in an Integrated Understanding System: Next Steps toward Human-Level Performance in Neural Language Models. PNAS. [Pdf]  | 
| 2020  Nguyen, D. T., Mummadi, C. K., Ngo, T. P. N., Nguyen, T. H. P., Beggel, L., & Brox, T. (2020). SELF: Learning to Filter Noisy Labels with Self-Ensembling. ICLR. [Pdf]  | 
| 2020  Nielsen, D., Jaini, P., Hoogeboom, E., & Welling, M. (2020). SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. NeurIPS. [Pdf]  | 
| 2020  Pabbaraju, C., Wang, P.-W., & Kolter, Z. (2020). Efficient semidefinite-programming-based inference for binary and multi-class MRFs. NeurIPS. [Pdf]  | 
| 2020  Rosenfeld, E., Winston, E., Ravikumar, P., & Kolter, Z. (2020). Certified Robustness to Label-Flipping Attacks via Randomized Smoothing. ICML. [Pdf]  | 
| 2020  Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K. O. (2020). Human motion trajectory prediction: a survey. The International Journal of Robotics Research, 39(8), 895–935. [Pdf]  | 
| 2020  Salman, H., Sun, M., Yang, G., Kapoor, A., & Kolter, Z. (2020). Denoised Smoothing: A Provable Defense for Pretrained Classifiers. NeurIPS. [Pdf]  | 
| 2020  Schirrmeister, R. T., Zhou, Y., Ball, T., & Zhang, D. (2020). Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features. NeurIPS. [Pdf]  | 
| 2020  Schönfeld, E., Schiele, B., & Khoreva, A. (2020). A U-Net Based Discriminator for Generative Adversarial Networks. CVPR. [Pdf]  | 
| 2020  Schorn, C., Elsken, T., Vogel, S., Runge, A., Guntoro, A., & Ascheid, G. (2020). Automated design of error-resilient and hardware-efficient deep neural networks. Neural Computing and Applications, 12365. [Pdf]  | 
| 2020  Schuff, H., Adel, H., & Vu N. T. (2020). F1 is Not Enough! Models and Evaluation Towards User-Centered Explainable Question Answering. EMNLP. [Pdf]   | 
| 2020  Shi, Y., Cheng, G., & Kharlamov, E. (2020). Keyword Search over Knowledge Graphs via Static and Dynamic Hub Labelings. WWW. [Pdf]  | 
| 2020  Sosnovik, I., Szmaja, M., & Smeulders, A. (2020). Scale-Equivariant Steerable Networks. ICLR. [Pdf]  | 
| 2020  Svetashova, Y., Zhou, B., Pychynski, T., Schmid, S., Sure-Vetter, Y., Mikut, R., & Kharlamov, E. (2020). Ontology-Enhanced Machine Learning Pipeline: a Bosch Use Case of Welding Quality Monitoring. ISWC. [Pdf]  | 
| 2020  Todescato, M., Carron, A., Carli, R., Pillonetto, G., & Schenato, L. (2020). Efficient spatio-temporal Gaussian regression via Kalman filtering. Automatica, 118, 109032. [Pdf]  | 
| 2020  Tran, T.-K., Gad-Elrab, M. H., Stepanova, D., Kharlamov, E., & Stroetgen, J. (2020). Fast Computation of Explanations for Inconsistency in Large-Scale Knowledge Graphs. WWW. [Pdf]  | 
| 2020  Van der Pol, E., Kipf, T., Oliehoek, F., & Welling, M. (2020). Plannable Approximations to MDP Homomorphisms: Equivariance under actions. AAMAS. [Pdf]  | 
| 2020  Van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., & Welling, M. (2020). MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning. NeurIPS. [Pdf]  | 
| 2020  Vinogradska, J., Bischoff, B., Achterhold, J., Koller, T., & Peters, J. (2020). Numerical Quadrature for Probabilistic Policy Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1), 164–175. [Pdf]  | 
| 2020  Volpp, M., Froehlich, L., Fischer, K., Doerr, A., Falkner, S., Hutter, F., & Daniel, C. (2020). Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization. ICLR. [Pdf]  | 
| 2020  Wang, P.-W., Stepanova, D., Domokos, C., & Kolter, J. Z. (2020). Differentiable learning of numerical rules in knowledge graphs. ICLR. [Pdf]  | 
| 2020  Wang, P.-W., & Kolter, Z. (2020). Community detection using fast low-cardinality semidefinite programming. NeurIPS. [Pdf]  | 
| 2020  Winston, E., & Kolter, Z. (2020). Monotone operator equilibrium networks. NeurIPS. [Pdf]  | 
| 2020  Wöhlke, J., Schmitt, F., & van Hoof, H. (2020). A Performance-Based Start State Curriculum Framework for Reinforcement Learning. AAMAS. [Pdf]  | 
| 2020  Wong, E., Rice, L., & Kolter, J. Z. (2020a). Fast is better than free: Revisiting adversarial training. ICLR. [Pdf]  | 
| 2020  Wong, E., Rice, L., & Kolter, Z. (2020b). Overfitting in adversarially robust deep learning. ICML. [Pdf]  | 
| 2020  Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F. (2020). Understanding and Robustifying Differentiable Architecture Search. ICLR. [Pdf]  | 
| 2020  Zela, A., Siems, J., & Hutter, F. (2020). NAS-BENCH-1SHOT1: Benchmarkting and Dissecting One-Shot Neural Architecture Search. ICLR. [Pdf]  | 
| 2020  Zimmer, C., Driess, D., Meister, M., & Nguyen-Tuong, D. (2020). Adaptive Discretization for Evaluation of Probabilistic Cost Functions. AISTATS. [Pdf]  | 
| 2020  Zimmer, C., & Yaesoubi, R. (2020). Influenza forecasting framework based on Gaussian processes. ICML. [Pdf]  | 
| 2019 | 
|---|
| 2019  Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable Convex Optimization Layers. NeurIPS. [Pdf]  | 
| 2019  Akrour, R., Pajarinen, J., & Neumann, G. (2019). Projections for Approximate Policy Iteration Algorithms. ICML. [Pdf]  | 
| 2019  Angerbauer, K., Adel, H., & Vu, N. T. (2019). Automatic Compression of Subtitles with Neural Networks and its Effect on User Experiences. Interspeech. [Pdf]  | 
| 2019  Arvanitis, G., Hauberg, S., Henning, P., & Schober, M. (2019). Fast and Robust Shortest Paths on Manifolds Learned from Data. AISTATS. [Pdf]  | 
| 2019  Bai, S., Koltun, V., & Kolter, J. Z. (2019). Deep Equilibrium Models. NeurIPS. [Pdf]  | 
| 2019  Becker, P., Pandya, H., Gebhardt, G., Zhao, C., Taylor, J., & Neumann, G. (2019). Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces. ICML. [Pdf]  | 
| 2019  Beggel, L., Pfeiffer, M., & Bischl, B. (2019). Robust Anomaly Detection in Images using Adversarial Autoencoders. ECML. [Pdf]  | 
| 2019  Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods, 16(12), 1226–1232. [Pdf]  | 
| 2019  Bhattacharyya, A., Hanselmann, M., Fritz, M., Schiele, B., & Straehle, C.-N. (2019, December). Conditional Flow Variational Autoencoders for Structured Sequence Prediction [Workshop]. NeurIPS, Vancouver, Canada.  | 
| 2019  Blaiotta, C. (2019). Learning Generative Socially Aware Models of Pedestrian Motion. IEEE Robotics and Automation Letters, 4(4), 3433–3440. [Pdf]  | 
| 2019  Chen, J., Wang, X., Cheng, G., Kharlamow, E., & Qu, Y. (2019). Towards More Usable Dataset Search: From Query Characterization to Snippet Generation. CIKM. [Pdf]  | 
| 2019  Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified Adversarial Robustness via Randomized Smoothing. ICML. [Pdf]  | 
| 2019  Delhaisse, B., Rozo, L., & Caldwell, D. G. (2019). PyRoboLearn: A Python Framework for Robot Learning Practitioners. CoRL. [Pdf]  | 
| 2019  Dikeoulias, I., Strötgen, J., & Razniewski, S. (2019). Epitaph or Breaking News? Analyzing and Predicting the Stability of Knowledge Base Properties. TempWeb. [Pdf]  | 
| 2019  Doellinger, J., Prabhakaran, V. S., Fu, L., & Spies, M. (2019). Environment-Aware Multi-Target Tracking of Pedestrians. IEEE Robotics and Automation Letters, 4(2), 1831–1837. [Pdf]  | 
| 2019  Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., & Daniel, C. (2019). Trajectory-Based Off-Policy Deep Reinforcement Learning. ICML. [Pdf]  | 
| 2019  Elsken, T., Metzen, J. H., & Hutter, F. (2019a). Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution. ICLR. [Pdf]  | 
| 2019  Elsken, T., Metzen, J. H., & Hutter, F. (2019b). Neural Architecture Search: A Survey. Journal of Machine Learning Research 20 (2, 1–21. [Pdf]  | 
| 2019  Esteban, D., Rozo, L., & Caldwell, D. G. (2019). Hierarchical Reinforcement Learning for Concurrent Discovery of Compound and Composable Policies. Iros. [Pdf]  | 
| 2019  Fischer, F., Xiao, H., Kao, C., Stachelscheid, Y., Johnson, B., Razar, D., Furley, P., Buckley, N., Boettinger, K., Muntean, P., & Grossklags, J. (2019). Stack Overflow Considered Helpful! Deep Learning Security Nudges Towards Stronger Cryptography. Usenix Security Symposium. [Pdf]  | 
| 2019  Friedrich, A., Tran, T.-K., Milchevski, D., Tomazic, F., Marusczyk, A., Adel, H., Stepanova, D., Stroetgen, J., Hildebrand, F., & Kharlamov, E. (2019). Towards the Bosch Materials Science Knowledge Base. ISWC (Industry Track). [Pdf]  | 
| 2019  Gad-Elrab, M., Stepanova, D., Urbani, J., & Weikum, G. (2019a). ExFact: Explaining Facts over Knowledge Graphs and Text. WSDM. [Pdf]  | 
| 2019  Gad-Elrab, M., Stepanova, D., Urbani, J., & Weikum, G. (2019b). Tracy: Tracing Facts over Knowledge Graphs and Text. WWW. [Pdf]  | 
| 2019  Garcia, V., Akata, Z., & Welling, M. (2019). GRIN: Graphical Recurrent Inference Networks. NeurIPS.  | 
| 2019  Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., & Schölkopf, B. (2019). Coordinating users of shared facilities via data-driven predictive assistants and game theory. UAI. [Pdf]  | 
| 2019  Guo, M., & Bürger, M. (2019). Predictive Safety Network for Resource-constrained Multi-agent Systems. CoRL. [Pdf]  | 
| 2019  Gupta, D., Berberich, K., Strötgen, J., & Zeinalipour-Yazti, D. (2019). Generating Semantic Aspects for Queries. ESWC. [Pdf]  | 
| 2019  Haussmann, M., Hamprecht, F. A., & Kandemir, M. (2019a). Deep Active Learning with Adaptive Acquisition. IJCAI. [Pdf]  | 
| 2019  Haussmann, M., Hamprecht, F. A., & Kandemir, M. (2019b). Sampling-Free Variational Inference of Bayesian Neural Nets with Variance Backpropagation. UAI. [Pdf]  | 
| 2019  Hoogeboom, E., Peters, J., van den Berg, R., & Welling, M. (2019). Integer Discrete Flows and Lossless Compression. NeurIPS. [Pdf]  | 
| 2019  Hoogeboom, E., Van den Berg, R., & Welling, M. (2019). Emerging Convolutions for Generative Normalizing Flows. ICML. [Pdf]  | 
| 2019  Hoyer, L., Kesper, P., Khoreva, A., & Fischer, V. (2019). Short-Term Prediction and Multi-Camera Fusion on Semantic Grids. ICCV. [Pdf]  | 
| 2019  Hoyer, L., Munoz, M., Katiyar, P., Khoreva, A., & Fischer, V. (2019). Grid Saliency for Context Explanations of Semantic Segmentation. NeurIPS. [Pdf]  | 
| 2019  Huang, Y., Rozo, L., Silvério, J., & Caldwell, D. G. (2019). Kernelized movement primitives. The International Journal of Robotics Research, 38(7), 833–852. [Pdf]  | 
| 2019  Huang, Y., Rozo, L., Silverio, J., & Caldwell, D. G. (2019). Non-parametric Imitation Learning of Robot Motor Skills. ICRA. [Pdf]  | 
| 2019  Huang, Z., Li, S., Cheng, G., Kharlamov, E., & Qu, Y. (2019). Making Sense of News via Relationship Subgraphs. CIKM. [Pdf]  | 
| 2019  Jaquier, N., Rozo, L., Calinon, S., & Bürger, M. (2019). Bayesian Optimization Meets Riemannian Manifolds in Robot Learning. CoRL. [Pdf]  | 
| 2019  John, D., Heuveline, V., & Schober, M. (2019). GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver. ICML. [Pdf]  | 
| 2019  Kemos, A., Adel, H., & Schütze, H. (2019). Neural Semi-Markov Conditional Random Fields for Robust Character-Based Part-of-Speech Tagging. NAACL. [Pdf]  | 
| 2019  Kharlamov, E., Kotidis, Y., Mailis, T., Neuenstadt, C., Nikolaou, C., Ozcep, O., Christoforos Svingos, C., Zheleznyakov, D., Ioannidis, Y., Lamparter, S., & Moller, R. (2019). An Ontology-Mediated Analytics-Aware Approach to Support Monitoring and Diagnostics of Static and Streaming Data. SSRN Electronic Journal, 1–34. [Pdf]  | 
| 2019  Klungre, V. N., Soylu, A., Jimenez-Ruiz, E., Kharlamov, E., & Giese, M. (2019). Query Extension Suggestions for Visual Query Systems Through Ontology Projection and Indexing. New Generation Computing, 37(4), 361–392. [Pdf]  | 
| 2019  Koch, M., Spies, M., & Bürger, M. (2019). Trust Regions for Safe Sampling-Based Model Predictive Control. ICRA. [Pdf]  | 
| 2019  Köhler, J., Autenrieth, M., & Beluch, W. (2019). Uncertainty Based Detection and Relabeling of Noisy Image Labels. CVPR. [Pdf]  | 
| 2019  Kusumoto, R., Palmieri, L., Spies, M., Csiszar, A., & Arras, K. O. (2019). Informed Information Theoretic Model Predictive Control. ICRA. [Pdf]  | 
| 2019  Lange, L., Adel, H., & Stroetgen, J. (2019). NLNDE: Enhancing Neural Sequence Taggers with Attention and Noisy Channel for Robust Pharmacological Entity Detection. BioNLP. [Pdf]  | 
| 2019  Lange, L., Adel, H., & Strötgen, J. (2019). NLNDE: The Neither-Language-Nor-Domain-Experts’ Way of Spanish Medical Document De-Identification. IberLEF. [Pdf]  | 
| 2019  Lange, L., Alonso, O., & Strötgen, J. (2019). The Power of Temporal Features for Classifying News Articles. TempWeb. [Pdf]  | 
| 2019  Lange, L., Hedderich, M. A., & Klakow, D. (2019). Feature-Dependent Confusion Matrices for Low-Resource NER Labeling with Noisy Labels. EMNLP. [Pdf]  | 
| 2019  Li, B., Schmidt, F. R., & Kolter, Z. (2019). Adversarial camera stickers: A physical camera-based attack on deep learning systems. ICML. [Pdf]  | 
| 2019  Li, J., Qu, S., Li, X., Szurley, J., Kolter, J. Z., & Metze, F. (2019). Adversarial Music: Real world Audio Adversary against Wake-word Detection System. NeurIPS. [Pdf]  | 
| 2019  Look, A., & Kandemir, M. (2019, December). Differential Bayesian Neural Nets [Workshop: Poster]. NeurIPS, Vancouver, Canada. [Pdf]  | 
| 2019  Louizos, C., Shi, X., & Welling, M. (2019). The Functional Neural Process. NeurIPS. [Pdf]  | 
| 2019  Mailis, T., Kotidis, Y., Nikolopoulos, V., Kharlamov, E., Horrocks, I., & Ioannidis, Y. (2019a). An Efficient Index for RDF Query Containment. SIGMOD. [Pdf]  | 
| 2019  Mailis, T., Kotidis, Y., Nikolopoulos, V., Kharlamov, E., Horrocks, I., & Ioannidis, Y. (2019b). Mv-index: An Efficient Index for Graph-Query Containment. ISWC. [Pdf]  | 
| 2019  Manek, G., & Kolter, J. Z. (2019). Learning Stable Deep Dynamics Models. NeurIPS. [Pdf]  | 
| 2019  McHardy, R., Adel, H., & Klinger, R. (2019). Adversarial Training for Satire Detection: Controlling for Confounding Variables. NAACL. [Pdf]  | 
| 2019  Mehdi, A., Kharlamov, E., Stepanova, D., Loesch, F., & Gonzales, I. G. (2019). Towards Semantic Integration of Bosch Manufacturing Data. ISCW (Industry Track). [Pdf]  | 
| 2019  Mettes, P., van der Pol, E., & Snoek, C. (2019). Hyperspherical Prototype Networks. NeurIPS. [Pdf]  | 
| 2019  Mummadi, C. K., Brox, T., & Metzen, J. H. (2019). Defending against universal perturbations with shared adversarial training. ICCV. [Pdf]  | 
| 2019  Nagarajan, V., & Kolter, J. Z. (2019). Uniform convergence may be unable to explain generalization in deep learning. NeurIPS. [Pdf]  | 
| 2019  Nguyen, D. T., Dax, M., Mummadi, C. K., Ngo, N., Hoai, T., Nguyen, P., Lou, Z., & Brox, T. (2019). DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision. NeurIPS. [Pdf]  | 
| 2019  Patel, K., Rambach, K., Visentin, T., Rusev, D., Pfeiffer, M., & Yang, B. (2019). Deep Learning-based Object Classification on Automotive Radar Spectra. IEEE Radar. [Pdf]  | 
| 2019  Rozo, L. (2019). Interactive Trajectory Adaptation through Force-guided Bayesian Optimization. IROS. [Pdf]  | 
| 2019  Savkovic, O., Kharlamov, E., & Lamparter, S. (2019). Validation of SHACL Constraints over KGs with OWL 2 Ontologies via Rewriting. ESWC. [Pdf]  | 
| 2019  Schönfeld, E., Ebrahimi, S., Sinha, S., Darrall, T., & Akata, Z. (2019). Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders. CVPR. [Pdf]  | 
| 2019  Schwab, M., Jäschke, R., Fischer, F., & Stroetgen, J. (2019). “A Buster Keaton of Linguistics”: First Automated Approaches for the Extraction of Vossian Antonomasia. EMNLP. [Pdf]  | 
| 2019  Schwenkel, L., Guo, M., & Bürger, M. (2019). Optimizing Sequences of Probabilistic Manipulation Skills Learned from Demonstration. CoRL. [Pdf]  | 
| 2019  Silverio, J., Huang, Y., Abu-dakka, F., Rozo, L., & Caldwell, D. G. (2019). Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives. IROS. [Pdf]  | 
| 2019  Spies, M., Todescato, M., Becker, H., Kesper, P., Waniek, N., & Guo, M. (2019). Bounded Suboptimal Search with Learned Heuristics for Multi-Agent Systems. AAAI. [Pdf]  | 
| 2019  Trouleau, W., Etesami, J., Grossglauser, M., Kiyavash, M., & Thiran, P. (2019). Learning Hawkes Processes Under Synchronization Noise. ICML. [Pdf]  | 
| 2019  Wagner, J., Köhler, J. M., Gindele, T., Hetzel, L., Wiedemer, J. T., & Behnke, S. (2019). Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks. CVPR. [Pdf]  | 
| 2019  Wang, P.-W., Donti, P., Wilder, B., & Kolter, Z. (2019). SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. ICML. [Pdf]  | 
| 2019  Wang, X., Chen, J., Li, S., Cheng, G., Pan, J. Z., Kharlamov, E., & Qu, Y. (2019). A Framework for Evaluating Snippet Generation for Dataset Search. ISWC. [Pdf]  | 
| 2019  Wang, X., Cheng, G., & Kharlamov, E. (2019). Towards Multi-Facet Snippets for Dataset Search. PROFILES. [Pdf]  | 
| 2019  Waniek, N. (2020). Transition Scale-Spaces: A Computational Theory for the Discretized Entorhinal Cortex. Neural Computation, 32(2), 330–394. [Pdf]  | 
| 2019  Wong, E., Schmidt, F. R., & Kolter, Z. (2019). Wasserstein Adversarial Examples via Projected Sinkhorn Iterations. ICML. [Pdf]  | 
| 2019  Zafar, M. B., Valera, I., Gomez-Rodriguez, M., & Gummadi, K. P. (2019). Fairness Constraints: A Flexible Approach for Fair Classification. Journal of Machine Learning Research 20, 1–42. [Pdf]  | 
| 2019  Zhang, D., & Khoreva, A. (2019). Progressive Augmentation of GANs. NeurIPS. [Pdf]  | 
| 2019  Zheleznyakov, D., Kharlamov, E., Nutt, W., & Calvanese, D. (2019). On Expansion and Contraction of DL-Lite Knowledge Bases. SSRN Electronic Journal, 1–23. [Pdf]  | 
| 2018 | 
|---|
| 2018  Achterhold, J., Köhler, J. M., Schmeink, A., & Genewein, T. (2018). Variational Network Quantization. ICLR. [Pdf]  | 
| 2018  Agarwal, P., Strötgen, J., del Corro, L., Hoffart, J., & Weikum, G. (2018). diaNED: Time-Aware Named Entity Disambiguation for Diachronic Corpora. ACL. [Pdf]  | 
| 2018  Beggel, L., Kausler, B. X., Schiegg, M., Pfeiffer, M., & Bischl, B. (2018). Time series anomaly detection based on shapelet learning. Computational Statistics, 34(3), 945–976. [Pdf]  | 
| 2018  Conner D.C. et al. (2018) Collaborative Autonomy Between High-Level Behaviors and Human Operators for Control of Complex Tasks with Different Humanoid Robots. In: Spenko M., Buerger S., Iagnemma K. (eds) The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer Tracts in Advanced Robotics, vol 121. Springer, Cham. [Pdf]  | 
| 2018  Domokos, C., Schmidt, F. R., & Cremers, D. (2018). MRF Optimization with Separable Convex Prior on Partially Ordered Labels. ECCV. [Pdf]  | 
| 2018  Domokos, C., Schmidt, F. R., & Cremers, D. (2018). MRF Optimization with Separable Convex Prior on Partially Ordered Labels. ECCV. [Pdf]  | 
| 2018  Estellers, V., Schmidt, F. R., & Cremers, D. (2018). Robust Fitting of Subdivision Surfaces for Smooth Shape Analysis. 3DV. [Pdf]  | 
| 2018  Etesami, J., Habibnia, A., & Kiyavash, N. (2018). Econometric Modeling of Systemic Risk: A Time Series Approach. KDD. [Pdf]  | 
| 2018  Fischer, V., Pfeil, T., & Köhler, J. (2018). The streaming rollout of deep networks - towards fully model-parallel execution. NIPS. [Pdf]  | 
| 2018  Gutzeit, L., Fabisch, A., Otto, M., Metzen, J. H., Hansen, J., Kirchner, F., & Kirchner, E. A. (2018). The BesMan Learning Platform for Automated Robot Skill Learning. Frontiers in Robotics and AI, 5, para. 1. [Pdf]  | 
| 2018  Pfeiffer, M., & Pfeil, T. (2018). Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience, 12, para. 1. [Pdf]  | 
| 2018  Reeb, D., Doerr, A., Gerwinn, S. & Rakitsch, B. (2018). Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds. NeurIPS.[Pdf]  | 
| 2018  Salehkaleybar, S., Etesami, J., Kiyavash, N., & Zhang, K. (2018). Learning Vector Autoregressive Models with Latent Processes. AAAI. [Pdf]  | 
| 2018  Tayeb, Z., Waniek, N., Fedjaev, J., Ghaboosi, N., Rychly, L., Widderich, C., Richter, C., Braun, J., Saveriano, M., Cheng, G., & Conradt, J. (2018). Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces. Journal of Neural Engineering, 15(6), 65003. [Pdf]  | 
| 2018  Waniek, N. (2018). Hexagonal Grid Fields Optimally Encode Transitions in Spatiotemporal Sequences. Neural Computation, 30(10), 2691–2725. [Pdf]  | 
| 2018  Wong, E., Schmidt, F. R., Metzen, J. H., & Kolter, Z. (2018). Scaling provable adversarial defenses. NIPS. [Pdf]  | 
| 2018  Zimmer, C., Meister, M. & Nguyen-Tuong, D. (2018). Safe Active Learning for Time-Series Modeling with Gaussian Processes. NeurIPS. [Pdf]  | 
| 2017 | 
|---|
| 2017  Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., & Trimpe, S. (2017). Optimizing Long-term Predictions for Model-based Policy Search. CoRL. [Pdf]  | 
| 2017  Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., & Trimpe, S. (2017). Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers. ICRA. [Pdf]  | 
| 2017  Fischer, V., Kumar, M. C., Metzen, J. H., & Brox, T. (2017). Adversarial examples for semantic image segmentation. ICLR. [Pdf]  | 
| 2017  Gondal, W. M., Köhler, J. M., Grzeszick, R., Fink, G. A., & Hirsch, M. (2017). Weakly-Supervised Localization of Diabetic Retinopathy Lesions in Retinal Fundus Images. ICIP. [Pdf]  | 
| 2017  Heit, J., Liu, J., & Shah, M. (2017). An Architecture for the Deployment of Statistical Models for the Big Data Era. IEEE. [Pdf]  | 
| 2017  Meister, M., & Steinwart, I. (2017). Optimal Learning Rates for Localized SVMs. JMLR. [Pdf]  | 
| 2017  Metzen, J. H., Genewein, T., Fischer, V., & Bischoff, B. (2017). On Detecting Adversarial Perturbations. ICLR. [Pdf]  | 
| 2017  Metzen, J. H., Kumar, M. C., Brox, T., & Fischer, V. (2017). Universal Adversarial Perturbations Against Semantic Image Segmentation. ICCV. [Pdf]  | 
| 2017  Schillinger, M., Hartmann, B., Skalecki, P., Meister, M., Nguyen-Tuong, D., & Nelles, O. (2017). Safe Active Learning and Bayesian Optimization for Tuning a PI-Controller. IFAC. [Pdf]  | 
| 2017  Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2017). Multi-objective search for optimal multi-robot planning with finite LTL specifications and resource constraints. ICRA. [Pdf]  | 
| 2017  Wagner, J., Fischer, V., Herman, M., & Behnke, S. (2017). Learning Semantic Prediction using Pretrained Deep Feedforward Networks. ESANN. [Pdf]  | 
| 2017  Zhang, S., Bahrampour, S., & Ramakrishnan, N. (2017). Deep learning on symbolic representations for large-scale heterogeneous time-series event prediction. IEEE Xplore. [Pdf]  | 
| 2016 | 
|---|
| 2016  Daniel, C., van Hoof, H., Peters, J., & Neumann, G. (2016). Probabilistic inference for determining options in reinforcement learning. Machine Learning, 104(2–3), 337–357. [Pdf]  | 
| 2016  Dhar, S., Naveen, N., Cherkassky, V., & Shah, M. (2016). Universum Learning for Multiclass SVM. SVM. [Pdf]  | 
| 2016  Hartmann, B., Kloppenburg, E., Heuser, P., & Diener, R. (2016). Online-Methods for Engine Test Bed Measurements Considering Engine Limits. ISSAM. [Pdf]  | 
| 2016  Heit, J., Liu, J., & Shah, M. (2016a). An Architecture for the Deployment of Statistical Models for the Big Data Era. IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7840745&tag=1  | 
| 2016  Heit, J., Liu, J., & Shah, M. (2016b). An architecture for the deployment of statistical models for the big data era. IEEE. [Pdf]  | 
| 2016  Herman, M., Gindele, T., Wagner, J., Schmitt, F., & Burgard, W. (2016a). Inverse Reinforcement Learning with Simultaneous Estimation of Rewards and Dynamics. AISTATS. [Pdf]  | 
| 2016  Herman, M., Gindele, T., Wagner, J., Schmitt, F., & Burgard, W. (2016b). Simultaneous Estimation of Rewards and Dynamics from Noisy Expert Demonstrations. ESANN. [Pdf]  | 
| 2016  Koerts, F., Bürger, M., van der Schaft, A., & De Persis, C. (2016). Stability Analysis of Networked Systems Containing Damped and Undamped Nodes. ACC. [Pdf]  | 
| 2016  Metzen, J. H. (2016). Minimum Regret Search for Single- and Multi-Task Optimization. ICML. [Pdf]  | 
| 2016  Peters, J., Lee, D. D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., & Schaal, S. (2016). Robot Learning (Handbook ed.). Springer, Cham. [Pdf]  | 
| 2016  Schiegg, M., Diego, F., & Hamprecht, F. A. (2016). Learning Diverse Models: The Coulomb Structured Support Vector Machine. ECCV. [Pdf]  | 
| 2016  Schillinger, M., Ortelt, B., Hartman, B., Schreiter, J., Meister, M., & Nelles, O. (2016). Safe Active Learning of High Pressure Fuel Supply Systems. EUROSIM. [Pdf]  | 
| 2016  Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2016). Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning. DARS. [Pdf]  | 
| 2016  Schmitt, F., Bieg, H.-J., Manstetten, D., Herman, M., & Stiefelhagen, R. (2016). Predicting Lane Keeping Behavior of Visually Distracted Drivers Using Inverse Suboptimal Control. IV. [Pdf]  | 
| 2016  Schreiter, J., Nguyen-Tuong, D., & Toussaint, M. (2016). Efficient Sparsification for Gaussian Process Regression. Neuro Comp. [Pdf]  | 
| 2016  Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Schmidt, H., Romer, A., & Peters, J. (2016). Stability of Controllers for Gaussian Process Forward Models. ICML. [Pdf]  | 
| 2016  Wagner, J., Fischer, V., Herman, M., & Behnke, S. (2016). Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks. ESANN. [Pdf]  | 
| 2015 | 
|---|
| 2015  Dhar, S., Ramakrishnan, C. Y. N., & Shah, M. (2015). ADMM based Scalable Machine Learning on Spark. ADMM. [Pdf]  | 
| 2015  Herman, M., Fischer, V., Gindele, T., & Burgard, W. (2015). Inverse Reinforcement Learning of Behavioral Models for Online-Adapting Navigation Strategies. ICRA. [Pdf]  | 
| 2015  Schreiter, J., Englert, P., Nguyen-Tuong, D., & Toussaint, M. (2015). Sparse Gaussian Process Regression for Compliant, Real-time Robot Control. ICRA. [Pdf]  | 
| 2015  Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., & Toussaint, M. (2015). Safe Exploration for Active Learning with Gaussian Processes. ECML. [Pdf]  | 
| 2014 | 
|---|
| 2014  Bischoff, B., Nguyen-Tuong, D., Koller, T., Markert, H., & Knoll, A. (2014). Learning Throttle Valve Control Using Policy Search. ECML. [Pdf]  | 
| 2014  Bischoff, B., ERROR: No link has been specified!, van Hoof, H., McHutchon, A., Rasmussen, C. E., Knoll, A., Peters, J., & Deisenroth, M. P. (2014). Policy Search for Learning Robot Control Using Sparse Data. ICRA. [Pdf]  | 
| 2014  Tietze, N., Konigorski, U., Fleck, C., & Nguyen-Tuong, D. (2014). Model-based Calibration of Engine Controller Using Automated Transient Design of Experiment. ISSAM. [Pdf]  | 
| 2013 | 
|---|
| 2013  Bischoff, B., Markert, H., Knoll, A., & Nguyen-Tuong, D. (2013). Solving the 15-Puzzle Game Using Local Value-Iteration. SCAI. [Pdf]  | 
| 2013  Bischoff, B., Nguyen-Tuong, D., Markert, H., & Knoll, A. (2013). Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach. ESANN. [Pdf]  | 
| 2013  Bischoff, B., Nguyen-Tuong, D., Lee, I.-H., Streichert, F., & Knoll, A. (2013). Hierarchical Reinforcement Learning for Robot Navigation. ESANN. [Pdf]  | 
| 2012 | 
|---|
| 2012  Bischoff, B., Nguyen-Tuong, D., Streichert, F., Ewert, M., & Knoll, A. (2012). Fusing Vision and Odometry for Accurate Indoor Robot Localization. ICARCV. [Pdf]  | 
| 2012  ERROR: No link has been specified!, & Peters, J. (2012). Online Kernel-Based Learning for Task-Space Tracking Robot Control. TransNN. [Pdf]  |