Research
Publications
We want to be a part of the scientific community by contributing our research results to international conferences and journals.
Introduction
Publishing enables us to collaborate and learn from the broader scientific community. Below you find a number of papers presented at international conferences and published in renowned journals sorted by date, topics and conferences.
2024 |
---|
2024 Akinwande, V., Jiang, Y., Sam, D. & Kolter, J. Z. (2024). Understanding prompt engineering may not require rethinking generalization. ICLR. PDF |
2024 Baek, C., Kolter, J. Z. & Raghunathan, A. (2024). Why is SAM Robust to Label Noise? ICLR. PDF |
2024 Beik-Mohammedi, H., Hauberg, S., Arvanitidis, G., Figueroa, N., Neumann, G. & Rozo, L. (2024). Neural Contractive Dynamical Systems. PDF |
2024 Bini, M., Roth, K., Akata, Z. & Khoreva, A. (2024). ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections. ICML. PDF |
2024 Cheng, Z., Hao, Z., Xiaoqiang, W., Huang, J., Wu, Y., Liu, X., Zhao, Y., Songming, L. & Su, H. (2024). Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations. ICML. PDF |
2024 Chen, Q., Luo, W., Huang, Z., Lin, T., Wang, X., Soylu, A., Ell, B., Zhou, B., Kharlamov, E. & Cheng, G. (2024). ACORDAR 2.0: A Test Collection for Ad Hoc Dataset Retrieval with Densely Pooled Datasets and Question-Style Queries. SIGIR. |
2024 Eiter, T., Geibinger, T., Ruiz, N.H., Musliu, N., Oetsch, J., Pfliegler, D. & Stepanova, D. (2024). Adaptive large-neighbourhood search for optimisation in answer-set programming. AIJ. PDF |
2024 Ensinger, K., Tagliapietra, N., Ziesche, S. & Trimpe, S. (2024). Exact Inference for Continuous-Time Gaussian Process Dynamics. PDF |
2024 Ensinger, K., Ziesche, S. & Trimpe, S. (2024). Learning Hybrid Dynamics Models with Simulator-Informed Latent States. PDF |
2024 Hoffmann, D., Schrodi, S., Behrmann, N., Fischer, V. & Brox, T. (2024). Eureka-Moments in Transformers: Multi-Step Tasks Reveal Softmax Induced Optimization Problems. ICML. PDF |
2024 He, Y., Murata, N., Lai, C., Takida, Y., Uesaka, T., Kim, D., Liao, W., Mitsufuji, Y., Kolter, J., Z., Salakhutdinov R. & Ermon, S. (2024). Manifold Preserving Guided Diffusion. ICLR. PDF |
2024 Huang, H., Peng, S., Zhang, D. & Geiger, A. (2024). Renovating Names in Open-Vocabulary Segmentation Benchmarks. NeurIPs. PDF |
2024 Jaquier, N., Rozo, L., González-Duque, M., Borovitskiy, V. & Asfour, T. (2024). Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic manifolds. ICML. PDF |
2024 Jazbec, M., Forré, P., Mandt, S., Zhang, D. & Nalisnick, E. (2024). Early-Exit Neural Networks with Nested Prediction Sets. UAI. PDF |
2024 Jazbec, M., Timans, A., Hadži Veljković, T., Sakmann, K., Zhang, D., Naesseth, C. & Nalisnick, E. (2024). Fast yet Safe: Early-Exiting with Risk Control. NeurIPs. PDF |
2024 Jiang, Y., Baek, C. & Kolter, J. Z. (2024). On the Joint Interaction of Models, Data, and Features. ICLR. PDF |
2024 Kälble, J., Wirges, S., Tatarchenko, M. & Ilg, E. (2024). Accurate Training Data for Occupancy Map Prediction in Automated Driving Using Evidence Theory. PDF |
2024 Koch, S., Vaskevicius, N., Colosi, M., Hermosilla, P & Ropinski, T. (2024). Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds with Queryable Objects and Open-Set Relationships. CVPR. PDF |
2024 Li, Y., Keuper, M., Zhang, D. & Khoreva, A. (2024). Adversarial Supervision Makes Layout-to-Image Diffusion Models Thrive. ICLR. PDF |
2024 Mai, H. T., Chu, C. X. & Paulheim, H. (2024). Do LLMs Really Adapt to Domains? An Ontology Learning Perspective. ISWC. PDF |
2024 Maini, P., Goyal, S., Lipton, Z., Kolter, J. Z. & Raghunathan, A. (2024). T-MARS: Improving Visual Representations by Circumventing Text Feature Learning. ICLR. PDF |
2024 Öcal, B. M., Tatarchenko, M., Karaoğlu, S. & Gevers, T. (2024). SceneTeller: Language-to-3D Scene Generation. ECCV. PDF |
2024 Pan, C., Yaman, B., Nesti, T., Mallik, A., Allievi, A., Velipasalar, S. & Ren, L. (2024). VLP: Vision Language Planning for Autonomous Driving. CVPR. PDF |
2024 Pan, C., Yaman, B., Velipasalar, S. & Ren, L. (2024). CLIP-BEVFormer: Enhancing Multi-View Image-Based BEV Detector with Ground Truth Flow. CVPR. PDF |
2024 Pan, J., Falkener, S., Berkenkamp, F. & Vanschoren, J. (2024). MALIBO: Meta-learning for Likelihood-free Bayesian Optimization. ICML. PDF |
2024 Potyka, N., Zhu, Y., He, Y., Kharlamov, E. & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. AAMAS. PDF |
2024 Schneider, M., Krug, R., Vaskevicius, N., Palmieri, L. & Boedecker, J. (2024). The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning. NeurIPs. |
2024 Schrader, T., Lange, L., Razniewski, S. & Friedrich, A. (2024). QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios. EMNLP. PDF |
2024 Sokota, S., Farina, G., Wu, D., Hu, W., Wang, K., Kolter, J. Z. & Brown, N. (2024). The Update Equivalence Framework for Decision-Time Planning. ICLR. PDF |
2024 Sun, M., Liu, Z., Bair, A. & Kolter, J. Z. (2024). A Simple and Effective Pruning Approach for Large Language Models. ICLR. PDF |
2024 Tebbe, J., Zimmer, C., Steland, A., Lange-Hegermann, M. & Mies, F. (2024). Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning. AISTATS. |
2024 Tighineanu, P., Grossberger, L., Baireuther, P., Skubch, K., Falkner, S., Vinogradska, J. & Berkenkamp, F. Scalable (2024). Meta-Learning with Gaussian Processes. AISTATS. PDF |
2024 Wang, J., Laube, K. A., Li, Y., Hendrik Metzen, J., Cheng, S., Borges, J. & Khoreva, A. (2024). Label-free Neural Semantic Image Synthesis. ECCV. |
2024 Yunjie, H., Hernandez, D., Nayyeri, M., Xiong, B., Yuqicheng, Z., Kharlamov, E. & Staab, S. (2024). Generating SROI Ontologies via Knowledge Graph Query Embedding Learning. ECAI. PDF |
2024 Yuqicheng, Z., Nico, P., Nayyeri, M., Xiong, B., Yu, H., Kharlamov, E. & Staab, S. (2024). Predictive Multiplicity of Knowledge Graph Embeddings in Link Prediction. EMNLP. PDF |
2024 Zhai, R., Liu, B., Risteski, A., Kolter, J. Z. & Ravikumar, P. (2024). Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression. ICLR. PDF |
2024 Zhao, H., Yang, B., Cen, Y., Ren, J., Zhang, C., Dong, Y., Kharlamov, E., Zhao, S. & Tang, J. (2024). Pre-Training and Prompting for Few-Shot Node Classification on Text-Attributed Graphs. KDD. |
2024 Zhang, M., Gautam, V., Wang, M., Alabi, J., Shen, X., Klakow, D & Mosbach, M. (2024). The Impact of Demonstrations on Multilingual In-Context Learning: A Multidimensional Analysis. ACL. PDF |
2024 Zhuang, Z., Nicolae, M. & Fritz, M. (2024). Stealthy Imitation: Reward-guided Environment-free Policy Stealing. ICML. PDF |
2023 |
---|
2023 Andresel, M., Kien, T., Domokos, C., Minervini, P. & Stepanova, D. (2023). Combining Inductive and Deductive Reasoning for Query Answering over Incomplete Knowledge Graphs. CIKM |
2023 Beik-Mohammadi, H., Hauberg, S., Arvanitidis, G., Neumann, G. & Rozo, L. (2023). Reactive Motion Generation on Learned Riemannian Manifolds. IJRR. PDF |
2023 Bitzer, M., Meister, M. & Zimmer, C. (2023). Amortized Inference for Gaussian Process Hyperparameters of Structured Kernels. UAI. |
2023 Bitzer, M., Meister, M. & Zimmer, C. (2023). Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems. AISTATS. |
2023 Bjerke, M., Schott, L., Jensen, C., Battistin, C., Klindt, D. & Dunn, B. (2023). Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles. ICLR. PDF |
2023 Carlini, N., Kolter, J. Z., Tramer, F., Dvijotham, K. D., Rice, L. & Sun, M. (2023). (Certified!!) Adversarial Robustness for Free!. ICLR. PDF |
2023 Chen, B., Zhang, J., Zhang, X., Dong, Y., Song, J., Zhang, P., Xu, K., Kharlamov, E. & Tang, J. (2023). GCCAD: Graph Contrastive Coding for Anomaly Detection. TKDE. |
2023 Chu, C., Gad-Elrab, M., Tran, T., Schiller, M., Kharlamov, E. & Stepanova D. (2023) Supplier Optimization at Bosch with Knowledge Graphs and Answer Set Programming. ESWC. |
2023 Chubanov, S. (2023). On the complexity of PAC learning in Hilbert spaces. AAAI. |
2023 Cui, P., Zhang, D., Deng, Z., Dong, Y. & Zhu, J. (2023). Learning Sample Difficulty from Pre-trained Models for Reliable Prediction. NeurIPS. PDF |
2023 Cohen, L., Mansour, Y. & Moshkovitz, M. (2023).Finding Safe Zones of Markov Decision Processes Policies. NeurIPS. PDF |
2023 De Avila Belbute-Peres, F. & Kolter, J. Z. (2023). Simple initialization and parametrization of sinusoidal networks via their kernel bandwidth. ICLR. PDF |
2023 Ensinger, K., Ziesche, S., Rakitsch, B., Tiemann, M. & Trimpe, S. (2023). Combining Slow and Fast: Complementary Filtering for Dynamics Learning. AAAI. |
2023 Flynn, H., Reeb, D., Kandemir, M. & Peters, J. (2023). PAC-Bayes Bounds for Bandit Problems: A Survey and Experimental Comparison. TPAMI. PDF |
2023 Flynn, H., Reeb, D., Kandemir, M. & Peters, J. (2023). Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures. NeurIPS. PDF |
2023 Gao, N., Ngo, V.A., Ziesche, H. & Neumann, G. (2023). SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects. CoRL. PDF |
2023 Gruner, T., Belousov, B., Muratore, F., Palenicek, D. & Peters, J. (2023). Pseudo-Likelihood Inference. NeurIPS. |
2023 He, Y., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E. & Staab, S. (2023). Can Pattern Learning Enhance Complex Logical Query Answering?. ISWC. |
2023 Hou, Z., He, Y., Cen, Y., Liu, X., Dong, Y., Kharlamov, E. & Tang, J. (2023). GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner. WWW. |
2023 Huang, H., Geiger, A. & Zhang, D. (2023). GOOD: Exploring geometric cues for detecting objects in an open world. ICLR. PDF |
2023 Hung, C., Willmott, D. & Kolter, J. Z.(2023). TADA - Efficient Task-Agnostic Domain Adaptation for Transformers. ACL. |
2023 Ismaeil, Y., Stepanova, D., Kien, T. & Bloeckeel, H. (2023). Feabi: A Feature Selection-based Framework for Interpreting Knowledge Graph Embeddings. ISWC. |
2023 Jazbec, M., Allingham, J., Zhang, D. & Nalisnick, E. (2023): Towards Anytime Classification in Early-Exit Architectures by Enforcing Conditional Monotonicity. NeurIPs. PDF |
2023 Klironomos, A., Zhou, B., Tan, Z., Zheng, Z., Mohamed, G., Paulheim, H. & Kharlamov, E. (2023). ExeKGLib: Knowledge Graphs-Empowered Machine Learning Analytics. ESWC. |
2023 Lange, L., Stroetgen, J., Adel, H. & Klakow, D. (2023). Multilingual Normalization of Temporal Expressions with Masked Language Models. EACL. |
2023 Li, A., Qiu, C., Kloft, M., Smyth, P., Mandt, S. & Rudolph, M. (2023). Deep anomaly detection under labeling budget constraints. ICML. PDF. |
2023 Li, A., Qiu, C., Kloft, M., Smyth, P., Mandt, S. & Rudolph, M. (2023). Zero-Shot Batch-Level Anomaly Detection. NeurIPS. PDF. |
2023 Li, Y., Zhang, D., Keuper, M. & Khoreva, A. (2023). Intra-Source Style Augmentation for Improved Domain Generalization.WACV. PDF |
2023 Li, Y., Zhang, D., Keuper, M. & Khoreva, A. (2023). Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain Generalization. IJCV. |
2023 Luis, C. E., Bottero, A. G., Vinogradska, J., Berkenkamp, F., & Peters, J. (2023). Model-Base Uncertainty in Value Functions. AISTATS. |
2023 Mai, T., Ismaeil, Y., Tran, T., Blockeel, H. & Stepanova, D. (2023). Look beyond the Surface: A Demo for Explaining Knowledge Graph Embeddings and Entity Similarity. ISWC. |
2023 Metzen, J., Hutmacher, R., Hua, N., Boreiko, V., & Zhang, D.(2023). Identification of Systematic Errors of Image Classifiers on Rare Subgroups. ICCV. |
2023 Mohan, R., Elsken, T., Zela, A., Metzen, J. H., Staffler, B., Brox, T., Valada, A. & Hutter, F. (2023). Neural Architecture Search for Dense Prediction Tasks in Computer Vision. IJCV. |
2023 Müller, J., Radev, S., Schmier, R., Draxler, F., Rother, C. & Koethe, U. (2023). Finding Competence Regions in Domain Generalization. TMLR. PDF |
2023 Nurlanov, Z., Schmidt, F. R. & Bernard, F. (2023). Universe Points Representation Learning for Partial Multi-Graph Matching. AAAI. PDF |
2023 Ott, K., Tiemann, M, Hennig, P. & Briol, F. (2023). Bayesian Numerical Integration with Neural Networks. UAI. PDF |
2023 Ott, K., Betz, P., Stepanova, D., Gad-Elrab, M., Meilicke, C. & Stuckenschmidt, H. (2023). Rule-based Knowledge Graph Completion with Canonical Models. CIKM. |
2023 Qiu, Z., Liu, W., Feng, H., Xue, Y., Feng, Y., Liu, Z., Zhang, D., Weller, A. & Schölkopf, B. (2023). Controlling Text-to-Image Diffusion by Orthogonal Finetuning. NeurIPs. PDF |
2023 Rauch, C., Long, R., Ivan, V. & Vijayakumar, S. (2023). Sparse-Dense Motion Modelling and Tracking for Manipulation Without Prior Object Models. ICRA. |
2023 Reeb, D., Patel, K., Barsim, K., Schiegg, M. & Gerwinn, S. (2023). Validation of Composite Systems by Disrepancy Propagation. UAI. PDF |
2023 Schmier, R., Köthe, U. & Straehle, C. (2023). Positive Difference Distribution for Image Outlier Detection using Normalizing Flows and Contrastive Data. PDF |
2023 Schoenfeld, E., Borges, J., Schiele, B. & Khoreva, A. (2023) Discovering Class-Specific GAN Controls for Semantic Image Synthesis. CPR workshop for "Generative Models for Computer Vision”. PDF |
2023 Schroeder de Witt, C., Sokota, S., Kolter, J. Z., Foerster, J. N. & Strohmeier, M. (2023). Perfectly Secure Steganography Using Minimum Entropy Coupling. ICLR. PDF |
2023 Seligmann, F., Becker, P., Volpp, M. & Neumann, G. (2023). Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift. NeurIPs. PDF |
2023 Shala, G., Elsken, T., Hutter, F. & Grabocka, J. (2023). Transfer NAS with Meta-learned Bayesian Surrogates. ICLR. PDF |
2023 Sokota, S., D'Orazio, R., Kolter, J. Z., Loizou, N., Lanctot, M., Mitliagkas, J., Brown, N. & Kroer, C. (2023). A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games. ICLR. PDF |
2023 Song, Y., Keller, T., Sebe, N. & Welling, M. (2023). Flow Factorized Representation Learning. NeurIPS. PDF |
2023 Sushko, V., Zhang, D. , Gall, J. & Khoreva, A. (2023). One-Shot Synthesis of Images and Segmentation Masks. WACV. PDF |
2023 Sushko, V., Wang, R. & Gall, J. (2023). Smoothness Similarity Regularization for Few-Shot GAN Adaptation. ICCV |
2023 Tan, Z., Zhou, B., Zheng, Z., Savkovic, O., Huang, Z., Grangel Gonzalez, I., Soylu, A. & Kharlamov, E. (2023). Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring: A Bosch Case. ISWC. |
2023 Tan, Z., Zheng, Z., Klironomos, A., Gad-Elrab, M., Xiao, G., Soylu, A., Kharlamov, E. & Zhou, B. Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring. ISWC. |
2023 Taranovic, A., Kupcsik, A. G., Freymuth, N. & Neumann, G. (2023). Adversarial Imitation Learning with Preferences. ICLR. PDF |
2023 Tatarchenko, M. & Rambach, K. (2023). Histogram-based Deep Learning for Automotive Radar. PDF |
2023 Trockman, A., Willmott, D.& Kolter, J. Z. (2023). Understanding the Covariance Structure of Convolutional Filters. ICLR. PDF |
2023 Veseli, B., Singhania, S., Razniewski, S. & Weikum, G. (2023). Evaluating Language Models for Knowledge Base Completion. ESWC. PDF |
2023 Volpp, M., Dahlinger, P., Becker, P., Daniel, C.& Neuma, G. (2023). Accurate Bayesian Meta-Learning by Accurate Task Posterior Inference. ICLR. PDF |
2023 Wang, M., Adel, H., Lange, L., Strötgen, J. & Schütze, H. (2023). GradSim: Gradient-Based Language Grouping for Effective Multilingual Training. EMNLP. |
2023 Wang, X., Cheng, G., Pan, J., Kharlamov, E.& Qu, Y. (2023). BANDAR: Benchmarking Snippet Generation Algorithms for (RDF) Dataset Search. TKDE |
2023 Yatsura, M., Sakmann, K., Hua, N. G., Hein, M. & Metzen, J. H. (2023). Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation. ICLR. PDF |
2023 Zhai, R., Dan, C., Kolter, J. Z.& Ravikumar, P. K. (2023). Understanding Why Generalized Reweighting Does Not Improve Over ERM. ICLR. PDF |
2023 Zhang, D., Zhu, Y., Dong, Y., Wang, Y., Feng, W., Kharlamov, E. & Tang, J. (2023). ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation. WWW. |
2023 Zhang, F., Liu, X., Tang, J., Dong, Y., Yao, P., Zhang, J., Gu, X., Wang, Y., Kharlamov, E., Shao, B., Li, R. & Wang, K. (2023). OAG: Linking Entities Across Large-Scale Heterogeneous Knowledge Graphs. TKDE. |
2023 Zheng, Z., Zhou, B., Tan, Z., Savkovic, O., Rincon-Yanez, D., Nikolov, N., Roman, D., Soylu, A. & Kharlamov, E. (2023). Semantic Cloud System for Scaling Data Science Solutions for Welding at Bosch. ISWC. |
2023 Zheng, Z., Savkovic, O., Nikolov, N., Luu, H., Soylu, A., Kharlamov, E. & Zhou, B. (2023). Datalog with External Machine Learning Functions for Automated Cloud Resource Configuration. ISWC. |
2023 Zhou, B., Nikolov, N., Zheng, Z., Luo, X., Savkovic, O., Roman, D., Soylu, A. & Kharlamov, E. (2023). Scaling Data Science Solutions with Semantics and Machine Learning: Bosch Case. ISWC. |
2023 Zhu, Y., Potyka, N., Xiong, B., Tran, T., Nayyeri, M., Staab, S. & Kharlamov, E. (2023). Towards Statistical Reasoning with Ontology Embeddings. ISWC. |
2023 Ziesche, H. & Rozo, L. (2023). Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies. NeurIPS. |
2022 |
---|
2022 Anil, C., Pokle, A., Liang, K., Treutlein, J., Wu, Y., Bai, S., Kolter, J. Z., & Grosse, R. B. (2022). Path Independent Equilibrium Models Can Better Exploit Test-Time Computation. NeurIPS. |
2022 Adrian, D., Kupcsik, A., Spies, M., & Neumann H. (2022). Efficient and Robust Training of Dense Object Nets for Multi-Object Robot Manipulation. ICRA. |
2022 Arnaout, H., Tran, T.-K., Stepanova, D., Gad-Elrab, M.H., Razniewski, S., & Weikum G. (2022). Utilizing Language Models for Knowledge Graph Repair. WWW. |
2022 Baek, C., Jiang, Y., Raghunathan, A., & Kolter, J. Z. (2022). Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift. NeurIPS. |
2022 Bai, S., Koltun, V., & Kolter, J. Z. (2022). Neural Deep Equilibrium Solvers. ICLR. |
2022 Bansal, A., Stoll, D., Janowski, M., Zela, A., & Hutter, F. (2022). JAHS-Bench-201: A foundation for research on joint architecture and hyperparameter search. NeurIPS. PDF |
2022 Bitzer, M., Meister, M., & Zimmer, C. (2022). Structural Kernel Search via Bayesian Optimization and Symbolical Optimal Transport. NeurIPS. |
2022 Bottero, A. G., Luis, C. E., Vinogradska, J., Berkenkamp, F. & Peters, J. (2022). Information Theoretic Safe Exploration with Gaussian Processes. NeurIPS. |
2022 Di Castro, S., Mannot, S., & Di Castro, D. (2022). Analysis of Stochastic Processes through Replay Buffers. ICML. |
2022 Duffhauss, F., Ngo, A. V., Ziesche, H., & Neumann, G. (2022). FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion. ECCV. |
2022 Eiter, T., Geibinger, T., Higuera, N., Musliu, N., Oetsch, J., & Stepanova, D. (2022). Large-Neighbourhood Search for Optimisation in Answer-Set Solving. AAAI. |
2022 Eiter, T., Geibinger, T., Musliu, N., Oetsch, N. J., & Stepanova, D. (2022). Answer-Set Programming for Lexicographical Makespan Optimisation in Parallel Machine Scheduling. AAAI. |
2022 Eiter, T., Geibinger, T., Musliu, N., Oetsch, N. J., & Stepanova D. (2022). ALASPO: An Adaptive Large-Neighbourhood ASP Optimiser. KR. |
2022 Feng, W., Dong, Y., Tinglin, H., Yin, Z., Cheng, X., Kharlamov, E., & Tang, J. (2022). GRAND+: Scalable Graph-based Semi-Supervised Learning with Better Generalization. WWW. |
2022 Ferreira, F., Nierhoff, T., Sälinger, A., & Hutter, F. (2022). Learning synthetic environments and reward networks for reinforcement learning. ICLR. PDF |
2022 Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., & Hutter, F. (2022). Auto-sklearn 2.0: Hands-free automl via meta-learning. JMLR. PDF |
2022 Freymuth, N., Schreiber, N., Taranovic, A., Becker, P., & Neumann, G. (2022). Inferring Versatile Plans from Demonstrations by Matching Geometric Features. CoRL. PDF |
2022 Fröhlich, L., Lefarov, M., Zeilinger, M., & Berkenkamp, F. (2022). On-Policy Model Errors in Reinforcement Learning. ICLR. PDF |
2022 Gao, N., Ziesche, H., Vien, N.A., Volpp, M., & Neumann G. (2022). What Matters For Meta-Learning Vision Regression Tasks?. CVPR. |
2022 Geiger, P., & Straehle, C.-N. (2022). Fail-Safe Adversarial Generative Imitation Learning. TMLR. PDF |
2022 Goyal, S., Sun, M., Raghunathan, A., & Kolter, J. Z. (2022). Test Time Adaptation via Conjugate Pseudo-labels. NeurIPS. PDF |
2022 Graf, C., Adrian, D. B., Weil, J., Gabriel, M., Schillinger, P., Spies, M., Neumann, H., & Kupcsik, A. G. (2022). Learning Dense Visual Descriptors using Image Augmentations for Robot Manipulation Tasks. CoRL. PDF |
2022 Ho, V. T., Stepanova, D., Milchevski, D., Stroetgen, J., & Weikum, G. (2022). Enhancing Knowledge Bases with Quantity Facts. WWW. |
2022 Hoffmann, D. T., Behrmann, N., Gall, J., Brox, T., & Noroozi, M. (2022). Ranking Info Noise Contrastive Estimation: Boosting Contrastive Learning via Ranked Positives. AAAI. |
2022 Jiang, Y., Liu, E. Z., Eysenbach, B., Kolter, J. Z., & Finn, C. (2022). Learning Options via Compression. NeurIPS. |
2022 Jiang, Y., Nagarajan, V., Baek, C., & Kolter, J. Z. (2022). Assessing Generalization of SGD via Disagreement. ICLR. |
2022 Kosman, E., & Di Castro, D. (2022). GraphVid: It Only Takes a Few Nodes to Understand a Video. ECCV. PDF |
2022 Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., & Hutter, F. (2022). Nas-bench-suite-zero: Accelerating research on zero cost proxies. NeurIPS. PDF |
2022 Levinkov, E., Kardoost, A., Andres, B., & Keuper M. (2022). Higher-Order Multicuts for Geometric Model Fitting and Motion Segmentation. TPAMI. |
2022 Li, C. Y., Rakitsch, B., & Zimmer, C. (2022). Safe Active Learning for Multi-Output Gaussian Processes. AISTATS. |
2022 Lin, T., Chen, Q., Cheng, G., Soylu, A., Ell, B., Zhao, R., Shi, Q., Wang, X., Gu, Y., & Kharlamov, E. (2022). ACORDAR: A Test Collection for Ad Hoc Content-Based (RDF) Dataset Retrieval. SIGIR. |
2022 Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., & Hutter, F. (2022). Smac3: A versatile bayesian optimization package for hyperparameter optimization. JMLR. PDF |
2022 Lindinger, J., Rakitsch, B., & Lippert, C. (2022). Laplace Approximated Gaussian Process State-Space Models. UAI. PDF |
2022 Liu, X., Hong, H., Wang, X., Chen, Z., Kharlamov, E., Dong, Y., & Tang, J. (2022). SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs. WWW. |
2022 Look, A., Rakitsch, B., Kandemir, M., & Peters, J. (2022). A Deterministic Approximation to Neural SDEs. PAMI. |
2022 Lovisotto, G., Finnie, N., Munoz, M., Mummadi, C. K., & Metzen, J. H. (2022). Give Me Your Attention: Dot-Product Attention Considered Harmful for Adversarial Patch Robustness. CVPR. |
2022 Maini, P., Garg, S., Lipton, Z. C., & Kolter, J. Z. (2022). Characterizing Datapoints via Second-Split Forgetting. NeurIPS. |
2022 Manek, G., & Kolter, J. Z. (2022). The Pitfalls of Regularization in Off-Policy TD Learning. NeurIPS. |
2022 Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Safari, M., Yu, K., & Hutter, F. (2022). Nas-bench-suite: Nas evaluation is (now) surprisingly easy. ICLR. PDF |
2022 Moskalev, A., Sosnovik, I., Fischer, V., & Smeulders, A. (2022). Contrasting quadratic assignments for set-based representation learning. ECCV. PDF |
2022 Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., & Hutter, F. (2022). Transformers can do bayesian inference. ICLR. PDF |
2022 Nonnenmacher, M., Pfeil, T., Steinwart, I., & Reeb, D. (2022). SOSP: Efficiently Capturing Global Correlations by Second-Order Structured Pruning. ICLR. |
2022 Nonnenmacher, M., Oldenburg, L., Steinwart, I., & Reeb, D. (2022). Utilizing Expert Features for Contrastive Learning of Time-Series Representations. ICML. |
2022 Öztürk, E., Ferreira, F., Jomaa, H., Schmidt-Thieme, L., Grabocka, J., & Hutter, F. (2022). Zero-shot automl with pretrained models. ICML. PDF |
2022 Otto, F., Celik, O., Zhou, H., Ziesche, H., Ngo, A. V., & Neumann, G. (2022). Deep Black-Box Reinforcement Learning with Movement Primitives. CoRL. PDF |
2022 Pokle, A., Geng, Z., & Kolter, J. Z. (2022). Deep Equilibrium Approaches to Diffusion Models. NeurIPS. |
2022 Pujari, S., Strötgen, J., Giereth, M., Gertz, M., & Friedrich, A. (2022). Three Real-World Datasets and Neural Computational Models for Classification Tasks in Patent Landscaping. EMNLP. |
2022 Pujari, S., Mantiuk, F., Giereth, M., Stroetgen, J., & Friedrich, A. (2022). Evaluating Neural Multi-Field Document Representations for Patent Classification. BIR. |
2022 Qiu, C., Kloft, M., Mandt, S., & Rudolph, M. (2022). Raising the bar in graph-level anomaly detection. IJCAI. |
2022 Qiu, C., Li, A., Kloft, M., Rudolph, M., & Mandt, S. (2022). Latent Outlier Exposure for Anomaly Detection with Contaminated Data. ICML. PDF |
2022 Saseendran, A., Skubch, K., & Keuper, M. (2022). Trading off Image Quality for Robustness is not Necessary with Deterministic Autoencoders. NeurIPS. |
2022 Schirmer, M., Eltayeb, M., Lessmann, S., & Rudolph, M. (2022). Modeling Irregular Time Series with Continuous Recurrent Units. ICML. PDF |
2022 Sepliarskaia, A., Moskalev, A., Sosnovik, I., & Smeulders, A. (2022). LieGG: Studying learned Lie group generators. NeurIPS. PDF |
2022 Shi, Z., Wang, Y., Zhang, H., Kolter, J. Z., & Hsieh, C. (2022). Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation. NeurIPS. |
2022 Sokota, S., Hu, H., Wu, D. J., Kolter, J. Z., Foerster, J. N., & Brown, N. (2022). A Fine-Tuning Approach to Belief State Modeling. ICLR. |
2022 Sushko, V., Schoenfeld, E., Zhang, D., Gall, J., Schiele, B., & Khoreva, A. (2022). OASIS: Only Adversarial Supervision for Semantic Image Synthesis. IJCV. |
2022 Tighineanu, P., Skubch, K., Baireuther, P., Reiss, A., Berkenkamp, F., & Vinogradska, J. (2022). Transfer Learning with Gaussian Processes for Bayesian Optimization. AISTATS. |
2022 Wei, C. & Kolter, J. Z. (2022). Certified Robustness for Deep Equilibrium Models via Interval Bound Propagation. ICLR. |
2022 Wöhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). IJCAI. |
2022 Xiong, B., Potyka, N., Tran, T., Nayyeri, M., & Staab, S. (2022). Faithful Embeddings for EL++ Knowledge Bases. ISWC. |
2022 Yildiz, C., Kandemir, M., & Rakitsch, B. (2022). Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs. NeurIPS. |
2022 Youmna, I., Stepanova, D., Tran, T., Saranrittichai, P., Domokos, C., & Blockeel, H. (2022). Towards Neural Network Interpretability Using Commonsense Knowledge Graphs. ISWC. |
2022 Zela, A., Siems, J. N., Zimmer, L., Lukasik, J., Keuper, M., & Hutter, F. (2022). Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks. ICLR. PDF |
2022 Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh, C., & Kolter, J. Z. (2022). General Cutting Planes for Bound-Propagation-Based Neural Network Verification. NeurIPS. |
2022 Zhang, J., Beik-Mohammadi, H., & Rozo, L. (2022). Learning Riemannian Stable Dynamical Systems via Diffeomorphisms. CoRL. PDF |
2021 |
---|
2021 Behrmann, N., Gall, J., & Noroozi, M. (2021). Unsupervised Video Representation Learning by Bidirectional Feature Prediction. WACV. [Pdf] |
2021 Chen, H., Deng, S., Zhang, W., Xu, Z., Li, J., & Kharlamov, E. (2021). Neural symbolic reasoning with knowledge graphs: Knowledge extraction, relational reasoning, and inconsistency checking. Fundamental Research, 1(5), 565–573. PDF |
2021 Chowdhury, S. N., Wickramarachchi, R., Gad-Elrab, M. H., Stepanova, D., & Henson, C. A. (2021). Towards Leveraging Commonsense Knowledge for Autonomous Driving. ISWC. PDF |
2021 Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., & Talwalkar, A. (2021). Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. ICLR. [Pdf] |
2021 Di Castro, S. S., Mannor, S., & Di Castro, D. (2021). Sim and Real: Better Together. NeurIPS. [Pdf] |
2021 Donti, P. L., Agarwal, A., Bedmutha, N. V., Pileggi, L., & Kolter, J. Z. (2021). Adversarially robust learning for security-constrained optimal power flow. NeurIPS. [Pdf] |
2021 Donti, P. L., Roderick, M., Fazlyab, M., & Kolter, J. Z. (2021). Enforcing robust control guarantees within neural network policies. ICLR. [Pdf] |
2021 Donti, P. L., Rolnick, D., & Kolter, J. Z. (2021). DC3: A learning method for optimization with hard constraints. ICLR. [Pdf] |
2021 Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skočovský, P. & Stepanova, D. (2021). Answer-Set Programming for Lexicographical Makespan Optimisation in Parallel Machine Scheduling. KR. PDF |
2021 Fayyaz, M., Bahrami Rad, E., Diba, A., Noroozi, M., Adeli, E., Van Gool, L., & Gall, J. (2021). 3D CNNs with Adaptive Temporal Feature Resolutions. CVPR. [Pdf] |
2021 Franke, J. K. H., Koehler, G., Biedenkapp, A., & Hutter, F. (2021). Sample-Efficient Automated Deep Reinforcement Learning. ICLR. [Pdf] |
2021 Garcia, V., Hoogeboom, E., Fuchs, F., Posner, I., & Welling, M. (2021). E(n) Equivariant Normalizing Flows. NeurIPS. [Pdf] |
2021 Grünewald, S., Piccirilli, P., & Friedrich, A. (2021). Coordinate Constructions in Enhanced Universal Dependencies: Analysis and Computational Modeling. EACL. [Pdf] |
2021 Gurumurthy, S., Bai, S., Manchester, Z., & Kolter, J. Z. (2021). Joint inference and input optimization in equilibrium networks. NeurIPS. [Pdf] |
2021 Haussmann, M., Gerwinn, S., Look, A., Rakitsch, B., & Kandemir, M. (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. AISTATS. [Pdf] |
2021 Hedderich, M. A., Lange, L., Adel, H., Stroetgen, J., & Klakow, D. (2021). A Survey on Recent Approaches for Natural Language Processing in Low-Resource Scenarios. NAACL. [Pdf] |
2021 Huang, Y., Zhang, H., Shi, Y., Kolter, J. Z., & Anandkumar, A. (2021). Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds. NeurIPS. [Pdf] |
2021 Huang, Z., Bai, S., & Kolter, J. Z. (2021). (Implicit)^2: Implicit Layers for Implicit Representations. NeurIPS. [Pdf] |
2021 Isele, S. T., Schilling, M. P., Klein, F. E., Saralajew, S., & Zoellner, J. M. (2021). Radar Artifact Labeling Framework (RALF): Method for Plausible Radar Detections in Datasets. Vehits. [Pdf] |
2021 Jain, N., Tran, T. K., Gad-Elrab, M. H. & Stepanova, D. (2021). Improving Knowledge Graph Embeddings with Ontological Reasoning. ISWC. PDF |
2021 Keller, T. A., & Welling, M. (2021). Topographic VAEs learn equivariant capsules. NeurIPS. |
2021 Kumar Mummadi, C., Subramaniam, R., Hutmacher, R., Vitay, J., Fischer, V., & Metzen, J. H. (2021). Does enhanced shape bias improve neural network robustness to common corruptions? ICLR. [Pdf] |
2021 Metzen, J. H., & Yatsura, M. (2021). Efficient Certified Defenses Against Patch Attacks on Image Classifiers. ICLR. [Pdf] |
2021 Oren, J., Ross, C., Lefarov, M., Richter, F., Taitler, A., Feldman, Z., Daniel, C., & Di Castro, D. (2021). SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems. SOCS. [Pdf] |
2021 Ott, K., Katiyar, P., Hennig, P., & Tiemann, M. (2021). ResNet After All: Neural ODEs and Their Numerical Solution. ICLR. [Pdf] |
2021 Otto, F., Becker, P., Ngo, V. A., Ziesche, H. C., & Neumann, G. (2021). Differentiable Trust Region Layers for Deep Reinforcement Learning. ICLR. [Pdf] |
2021 Pabbaraju, C., Winston, E., & Kolter, J. Z. (2021). Estimating Lipschitz constants of monotone deep equilibrium models. ICLR. [Pdf] |
2021 Patel, K., Beluch, W., Rambach, K., Cozma, A., Pfeiffer, M., & Yang, B. (2021). Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra. IEEE Radar Conference. PDF |
2021 Patel, K., Beluch, W., Yang, B., Pfeiffer, M., & Zhang, D. (2021). Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning. ICLR. [Pdf] |
2021 Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., & Rudolph, M. (2021). Neural Transformation Learning for Deep Anomaly Detection Beyond Images. ICML. [Pdf] |
2021 Rice, L., Bair, A., Zhang, H., & Kolter, J. Z. (2021). Evaluating the spectrum of classifier robustness. NeurIPS. [Pdf] |
2021 Rudenko, A., Palmieri, L., Doellinger, J., Lilienthal, A. J., & Arras, K. O. (2021). Learning Occupancy Priors of Human Motion From Semantic Maps of Urban Environments. IEEE Robotics and Automation Letters, 6(2), 3248–3255. [Pdf] |
2021 Saseendran, A., Skubch, K., Falkner, S., & Keuper, M. (2021). Shape your Space: A Gaussian Mixture Regularization Approach to Deterministic Autoencoders. NeurIPS. [Pdf] |
2021 Schoenfeld, E., Sushko, V., Zhang, D., Gall, J., Schiele, B., & Khoreva, A. (2021). You Only Need Adversarial Supervision for Semantic Image Synthesis. ICLR. [Pdf] |
2021 Sokota, S., Ho, C., Ahmad, Z. F., & Kolter, J. Z. (2021). Monte Carlo Tree Search With Iteratively Refining State Abstractions. NeurIPS. [Pdf] |
2021 Spector, O., & Di Castro, D. (2021). InsertionNet - A Scalable Solution for Insertion. RA-L. [Pdf] |
2021 Trockman, A., & Kolter, J. Z. (2021). Orthogonalizing Convolutional Layers with the Cayley Transform. ICLR. [Pdf] |
2021 Volpp, M., Fluerenbrock, F., Grossberger, L., Daniel, C., & Neumann, G. (2021). Bayesian Context Aggregation for Neural Processes. ICLR. [Pdf] |
2021 Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J., & Kolter, J. Z. (2021). Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. NeurIPS.[Pdf] |
2021 Wong, E., & Kolter, J. Z. (2021). Learning perturbation sets for robust machine learning. ICLR. [Pdf] |
2021 Yatsura, M., Metzen, J. H., & Hein, M. (2021). Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks. NeurIPS. [Pdf] |
2021 Zaidi, S., Zela, A., Elsken, T., Holmes, C., Hutter, F., & Teh, Y. W. (2021). Neural Ensemble Search for Uncertainty Estimation and Dataset Shift. NeurIPS. [Pdf] |
2021 Zhai, R., Dan, C., Suggala, A., Kolter, J. Z., & Ravikumar, P. K. (2021). Boosted CVaR Classification. NeurIPS. [Pdf] |
2021 Zhao, J., Dong, Y., Ding, M., Kharlamov, E., & Tang, J. (2021). Adaptive Diffusion in Graph Neural Networks. NeurIPS. [Pdf] |
2020 |
---|
2020 Bai, S., Koltun, V., & Kolter, Z. (2020). Multiscale Deep Equilibrium Models. NeurIPS. [Pdf] |
2020 Becker, P., Arenz, O., & Neumann, G. (2020). Expected Information Maximization: Using the I-Projection for Mixture Density Estimation. ICLR. [Pdf] |
2020 Chubanov, S. (2020a). A polynomial algorithm for convex quadratic optimization subject to linear inequalities. Discrete Applied Mathematics, 275, 19–28. [Pdf] |
2020 Chubanov, S. (2020b). A scaling algorithm for optimizing arbitrary functions over vertices of polytopes. Mathematical Programming, para. 1. [Pdf] |
2020 Curi, S., Berkenkamp, F., & Krause, A. (2020). Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS. [Pdf] |
2020 De Avila Belbute-Peres, F., Economon, T., & Kolter, Z. (2020). Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction. ICML. [Pdf] |
2020 Dvijotham, K., Hayes, J., Balle, B., Kolter, Z., Qin, C., Gyorgy, A., Xiao, K., Gowal, S., & Kohli, P. (2020). A Framework for Robustness Certification of Smoothed Classifiers Using F-Divergences. ICLR. [Pdf] |
2020 Elsken, T., Staffler, B., Metzen, J. H., & Hutter, F. (2020). Meta-Learning of Neural Architectures for Few-Shot Learning. CVPR. [Pdf] |
2020 Etesami, J., & Geiger, P. (2020, April). Causal Transfer for Imitation Learning and Decision Making under Sensor-Shift. Proceedings of the AAAI Conference on Artificial Intelligence, 10118–10125. [Pdf] |
2020 Fathony, R., & Kolter, J. Z. (2020). AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning. AISTATS. [Pdf] |
2020 Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Kharlamov, E., & Tang, J. (2020). Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS. [Pdf] |
2020 Forssell, H., Kharlamov, E., & Thorstensen, E. (2020). On Equivalence and Cores for Incomplete Databases in Open and Closed Worlds. ICDT. [Pdf] |
2020 Friedrich, A., Adel, H., Tomazic, F., Benteau, R., Hingerl, J., Marusczyk, A., & Lange L. (2020). The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain. ACL. [Pdf] |
2020 Fröhlich, L., Klenske, E., Vinogradska, J., Daniel, C., & Zeilinger, M. (2020). Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization. AISTATS. [Pdf] |
2020 Fuchs, F. B., Worrall, D. E., Fischer, V., & Welling, M. (2020). SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurIPS. [Pdf] |
2020 Gad-Elrab, M. H., Stepanova, D., Tran, T.-K., Adel, H., & Weikum, G. (2020). ExCut: Explainable Embedding-based Clustering over Knowledge Graphs. ISWC. [Pdf] |
2020 Gargiani, M., Zanelli, A., Dinh, Q. T., Diehl, M., & Hutter, F. (2020). Transferring Optimality Across Data Distributions via Homotopy Methods. ICLR. [Pdf] |
2020 Grünewald, S., & Friedrich, A. (2020). RobertNLP at the IWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Parsing for English. International Conference on Parsing Technologies and the IWPT 2020, 245. [Pdf] |
2020 Gulshad, S., & Smeulders, A. (2020). Explaining with Counter Visual Attributes and Examples. ICMR. [Pdf] |
2020 Hewing, L., Arcari, E., Froehlich, L., & Zeilinger, M. (2020). On Simulation and Trajectory Prediction with Gaussian Process Dynamics. L4DC. [Pdf] |
2020 Hoogeboom, E., Garcia, V., Tomczak, J., & Welling, M. (2020). The Convolution Exponential and Generalized Sylvester Flows. NeurIPS. [Pdf] |
2020 Jaquier, N., & Rozo, L. (2020). High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds. NeurIPS. [Pdf] |
2020 Jaquier, N., Rozo, L., Caldwell, D. G., & Calinon, S. (2020). Geometry-aware manipulability learning, tracking, and transfer. The International Journal of Robotics and Research, 40(2-3), 624–650. [Pdf] |
2020 Kalayci, E. G., Gonzalez, I. G., Loesch, F., Xiao, G., Mehdi, A. U., Kharlamov, E., & Calvanese, D. (2020). Semantic Integration of Bosch Manufacturing Data Using Virtual Knowledge Graphs. ISWC. [Pdf] |
2020 Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Schober, M., & Hennig, P. (2020). Differentiable Likelihoods for Fast Inversion of “Likelihood-Free” Dynamical Systems. ICML. [Pdf] |
2020 Kipf, T., van der Pol, E., & Welling, M. (2020). Contrastive Learning of Structured World Models. ICLR. [Pdf] |
2020 Klenske, E.D. Optimal test pooling for efficient PCR testing of SARS-CoV2. Ir J Med Sci (2020). [Pdf] |
2020 Kugele, A., Pfeil, T., Pfeiffer, M., & Chicca, E. (2020). Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks. Frontiers in Neuroscience, 14, 1–13. [Pdf] |
2020 Lange, L., Adel, H., & Stroetgen, J. (2020a). Closing the Gap: Joint De-Identification and Concept Extraction in the Clinical Domain. ACL. [Pdf] |
2020 Lange, L., Adel, H., & Stroetgen, J. (2020b). On the Choice of Auxiliary Languages for Improved Sequence Tagging. Workshop on Representation Learning for NLP (RepL4NLP-2020). [Pdf] |
2020 Lange, L., Iurshina, A., Adel, H., & Stroetgen, J. (2020). Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions from Text. Workshop on Representation Learning for NLP (RepL4NLP-2020). [Pdf] |
2020 Li, J., Cheng, G., Liu, Q., Zhang, W., Kharlamov, E., Gunaratna, K., & Chen, H. (2020). Neural Entity Summarization with Joint Encoding and Weak Supervision. IJCAI. [Pdf] |
2020 Li, S., Huang, Z., Cheng, G., Kharlamov, E., & Gunaratna, K. (2020). Enriching Documents with Compact, Representative, Relevant Knowledge Graphs. IJCAI. [Pdf] |
2020 Lindinger, J., Reeb, D., Lippert, C., & Rakitsch, B. (2020). Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties. NeurIPS. [Pdf] |
2020 Ling, C. K., Fang, F., & Kolter, Z. (2020). Deep Archimedean Copulas. NeurIPS. [Pdf] |
2020 Liu, Q., Chen, Y., Cheng, G., Kharlamov, E., Li, J., & Qu, Y. (2020). Entity Summarization with User Feedback. ESWC. [Pdf] |
2020 Maini, P., Wong, E., & Kolter, Z. (2020). Adversarial Robustness Against the Union of Multiple Threat Models. ICML. [Pdf] |
2020 McClelland, J. L., Hill, F., Rudolph, M., Baldridge, J., & Schütze, H. (2020). Placing Language in an Integrated Understanding System: Next Steps toward Human-Level Performance in Neural Language Models. PNAS. [Pdf] |
2020 Nguyen, D. T., Mummadi, C. K., Ngo, T. P. N., Nguyen, T. H. P., Beggel, L., & Brox, T. (2020). SELF: Learning to Filter Noisy Labels with Self-Ensembling. ICLR. [Pdf] |
2020 Nielsen, D., Jaini, P., Hoogeboom, E., & Welling, M. (2020). SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. NeurIPS. [Pdf] |
2020 Pabbaraju, C., Wang, P.-W., & Kolter, Z. (2020). Efficient semidefinite-programming-based inference for binary and multi-class MRFs. NeurIPS. [Pdf] |
2020 Rosenfeld, E., Winston, E., Ravikumar, P., & Kolter, Z. (2020). Certified Robustness to Label-Flipping Attacks via Randomized Smoothing. ICML. [Pdf] |
2020 Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K. O. (2020). Human motion trajectory prediction: a survey. The International Journal of Robotics Research, 39(8), 895–935. [Pdf] |
2020 Salman, H., Sun, M., Yang, G., Kapoor, A., & Kolter, Z. (2020). Denoised Smoothing: A Provable Defense for Pretrained Classifiers. NeurIPS. [Pdf] |
2020 Schirrmeister, R. T., Zhou, Y., Ball, T., & Zhang, D. (2020). Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features. NeurIPS. [Pdf] |
2020 Schönfeld, E., Schiele, B., & Khoreva, A. (2020). A U-Net Based Discriminator for Generative Adversarial Networks. CVPR. [Pdf] |
2020 Schorn, C., Elsken, T., Vogel, S., Runge, A., Guntoro, A., & Ascheid, G. (2020). Automated design of error-resilient and hardware-efficient deep neural networks. Neural Computing and Applications, 12365. [Pdf] |
2020 Schuff, H., Adel, H., & Vu N. T. (2020). F1 is Not Enough! Models and Evaluation Towards User-Centered Explainable Question Answering. EMNLP. [Pdf] |
2020 Shi, Y., Cheng, G., & Kharlamov, E. (2020). Keyword Search over Knowledge Graphs via Static and Dynamic Hub Labelings. WWW. [Pdf] |
2020 Sosnovik, I., Szmaja, M., & Smeulders, A. (2020). Scale-Equivariant Steerable Networks. ICLR. [Pdf] |
2020 Svetashova, Y., Zhou, B., Pychynski, T., Schmid, S., Sure-Vetter, Y., Mikut, R., & Kharlamov, E. (2020). Ontology-Enhanced Machine Learning Pipeline: a Bosch Use Case of Welding Quality Monitoring. ISWC. [Pdf] |
2020 Todescato, M., Carron, A., Carli, R., Pillonetto, G., & Schenato, L. (2020). Efficient spatio-temporal Gaussian regression via Kalman filtering. Automatica, 118, 109032. [Pdf] |
2020 Tran, T.-K., Gad-Elrab, M. H., Stepanova, D., Kharlamov, E., & Stroetgen, J. (2020). Fast Computation of Explanations for Inconsistency in Large-Scale Knowledge Graphs. WWW. [Pdf] |
2020 Van der Pol, E., Kipf, T., Oliehoek, F., & Welling, M. (2020). Plannable Approximations to MDP Homomorphisms: Equivariance under actions. AAMAS. [Pdf] |
2020 Van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., & Welling, M. (2020). MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning. NeurIPS. [Pdf] |
2020 Vinogradska, J., Bischoff, B., Achterhold, J., Koller, T., & Peters, J. (2020). Numerical Quadrature for Probabilistic Policy Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1), 164–175. [Pdf] |
2020 Volpp, M., Froehlich, L., Fischer, K., Doerr, A., Falkner, S., Hutter, F., & Daniel, C. (2020). Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization. ICLR. [Pdf] |
2020 Wang, P.-W., Stepanova, D., Domokos, C., & Kolter, J. Z. (2020). Differentiable learning of numerical rules in knowledge graphs. ICLR. [Pdf] |
2020 Wang, P.-W., & Kolter, Z. (2020). Community detection using fast low-cardinality semidefinite programming. NeurIPS. [Pdf] |
2020 Winston, E., & Kolter, Z. (2020). Monotone operator equilibrium networks. NeurIPS. [Pdf] |
2020 Wöhlke, J., Schmitt, F., & van Hoof, H. (2020). A Performance-Based Start State Curriculum Framework for Reinforcement Learning. AAMAS. [Pdf] |
2020 Wong, E., Rice, L., & Kolter, J. Z. (2020a). Fast is better than free: Revisiting adversarial training. ICLR. [Pdf] |
2020 Wong, E., Rice, L., & Kolter, Z. (2020b). Overfitting in adversarially robust deep learning. ICML. [Pdf] |
2020 Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F. (2020). Understanding and Robustifying Differentiable Architecture Search. ICLR. [Pdf] |
2020 Zela, A., Siems, J., & Hutter, F. (2020). NAS-BENCH-1SHOT1: Benchmarkting and Dissecting One-Shot Neural Architecture Search. ICLR. [Pdf] |
2020 Zimmer, C., Driess, D., Meister, M., & Nguyen-Tuong, D. (2020). Adaptive Discretization for Evaluation of Probabilistic Cost Functions. AISTATS. [Pdf] |
2020 Zimmer, C., & Yaesoubi, R. (2020). Influenza forecasting framework based on Gaussian processes. ICML. [Pdf] |
2019 |
---|
2019 Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable Convex Optimization Layers. NeurIPS. [Pdf] |
2019 Akrour, R., Pajarinen, J., & Neumann, G. (2019). Projections for Approximate Policy Iteration Algorithms. ICML. [Pdf] |
2019 Angerbauer, K., Adel, H., & Vu, N. T. (2019). Automatic Compression of Subtitles with Neural Networks and its Effect on User Experiences. Interspeech. [Pdf] |
2019 Arvanitis, G., Hauberg, S., Henning, P., & Schober, M. (2019). Fast and Robust Shortest Paths on Manifolds Learned from Data. AISTATS. [Pdf] |
2019 Bai, S., Koltun, V., & Kolter, J. Z. (2019). Deep Equilibrium Models. NeurIPS. [Pdf] |
2019 Becker, P., Pandya, H., Gebhardt, G., Zhao, C., Taylor, J., & Neumann, G. (2019). Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces. ICML. [Pdf] |
2019 Beggel, L., Pfeiffer, M., & Bischl, B. (2019). Robust Anomaly Detection in Images using Adversarial Autoencoders. ECML. [Pdf] |
2019 Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods, 16(12), 1226–1232. [Pdf] |
2019 Bhattacharyya, A., Hanselmann, M., Fritz, M., Schiele, B., & Straehle, C.-N. (2019, December). Conditional Flow Variational Autoencoders for Structured Sequence Prediction [Workshop]. NeurIPS, Vancouver, Canada. |
2019 Blaiotta, C. (2019). Learning Generative Socially Aware Models of Pedestrian Motion. IEEE Robotics and Automation Letters, 4(4), 3433–3440. [Pdf] |
2019 Chen, J., Wang, X., Cheng, G., Kharlamow, E., & Qu, Y. (2019). Towards More Usable Dataset Search: From Query Characterization to Snippet Generation. CIKM. [Pdf] |
2019 Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified Adversarial Robustness via Randomized Smoothing. ICML. [Pdf] |
2019 Delhaisse, B., Rozo, L., & Caldwell, D. G. (2019). PyRoboLearn: A Python Framework for Robot Learning Practitioners. CoRL. [Pdf] |
2019 Dikeoulias, I., Strötgen, J., & Razniewski, S. (2019). Epitaph or Breaking News? Analyzing and Predicting the Stability of Knowledge Base Properties. TempWeb. [Pdf] |
2019 Doellinger, J., Prabhakaran, V. S., Fu, L., & Spies, M. (2019). Environment-Aware Multi-Target Tracking of Pedestrians. IEEE Robotics and Automation Letters, 4(2), 1831–1837. [Pdf] |
2019 Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., & Daniel, C. (2019). Trajectory-Based Off-Policy Deep Reinforcement Learning. ICML. [Pdf] |
2019 Elsken, T., Metzen, J. H., & Hutter, F. (2019a). Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution. ICLR. [Pdf] |
2019 Elsken, T., Metzen, J. H., & Hutter, F. (2019b). Neural Architecture Search: A Survey. Journal of Machine Learning Research 20 (2, 1–21. [Pdf] |
2019 Esteban, D., Rozo, L., & Caldwell, D. G. (2019). Hierarchical Reinforcement Learning for Concurrent Discovery of Compound and Composable Policies. Iros. [Pdf] |
2019 Fischer, F., Xiao, H., Kao, C., Stachelscheid, Y., Johnson, B., Razar, D., Furley, P., Buckley, N., Boettinger, K., Muntean, P., & Grossklags, J. (2019). Stack Overflow Considered Helpful! Deep Learning Security Nudges Towards Stronger Cryptography. Usenix Security Symposium. [Pdf] |
2019 Friedrich, A., Tran, T.-K., Milchevski, D., Tomazic, F., Marusczyk, A., Adel, H., Stepanova, D., Stroetgen, J., Hildebrand, F., & Kharlamov, E. (2019). Towards the Bosch Materials Science Knowledge Base. ISWC (Industry Track). [Pdf] |
2019 Gad-Elrab, M., Stepanova, D., Urbani, J., & Weikum, G. (2019a). ExFact: Explaining Facts over Knowledge Graphs and Text. WSDM. [Pdf] |
2019 Gad-Elrab, M., Stepanova, D., Urbani, J., & Weikum, G. (2019b). Tracy: Tracing Facts over Knowledge Graphs and Text. WWW. [Pdf] |
2019 Garcia, V., Akata, Z., & Welling, M. (2019). GRIN: Graphical Recurrent Inference Networks. NeurIPS. |
2019 Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., & Schölkopf, B. (2019). Coordinating users of shared facilities via data-driven predictive assistants and game theory. UAI. [Pdf] |
2019 Guo, M., & Bürger, M. (2019). Predictive Safety Network for Resource-constrained Multi-agent Systems. CoRL. [Pdf] |
2019 Gupta, D., Berberich, K., Strötgen, J., & Zeinalipour-Yazti, D. (2019). Generating Semantic Aspects for Queries. ESWC. [Pdf] |
2019 Haussmann, M., Hamprecht, F. A., & Kandemir, M. (2019a). Deep Active Learning with Adaptive Acquisition. IJCAI. [Pdf] |
2019 Haussmann, M., Hamprecht, F. A., & Kandemir, M. (2019b). Sampling-Free Variational Inference of Bayesian Neural Nets with Variance Backpropagation. UAI. [Pdf] |
2019 Hoogeboom, E., Peters, J., van den Berg, R., & Welling, M. (2019). Integer Discrete Flows and Lossless Compression. NeurIPS. [Pdf] |
2019 Hoogeboom, E., Van den Berg, R., & Welling, M. (2019). Emerging Convolutions for Generative Normalizing Flows. ICML. [Pdf] |
2019 Hoyer, L., Kesper, P., Khoreva, A., & Fischer, V. (2019). Short-Term Prediction and Multi-Camera Fusion on Semantic Grids. ICCV. [Pdf] |
2019 Hoyer, L., Munoz, M., Katiyar, P., Khoreva, A., & Fischer, V. (2019). Grid Saliency for Context Explanations of Semantic Segmentation. NeurIPS. [Pdf] |
2019 Huang, Y., Rozo, L., Silvério, J., & Caldwell, D. G. (2019). Kernelized movement primitives. The International Journal of Robotics Research, 38(7), 833–852. [Pdf] |
2019 Huang, Y., Rozo, L., Silverio, J., & Caldwell, D. G. (2019). Non-parametric Imitation Learning of Robot Motor Skills. ICRA. [Pdf] |
2019 Huang, Z., Li, S., Cheng, G., Kharlamov, E., & Qu, Y. (2019). Making Sense of News via Relationship Subgraphs. CIKM. [Pdf] |
2019 Jaquier, N., Rozo, L., Calinon, S., & Bürger, M. (2019). Bayesian Optimization Meets Riemannian Manifolds in Robot Learning. CoRL. [Pdf] |
2019 John, D., Heuveline, V., & Schober, M. (2019). GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver. ICML. [Pdf] |
2019 Kemos, A., Adel, H., & Schütze, H. (2019). Neural Semi-Markov Conditional Random Fields for Robust Character-Based Part-of-Speech Tagging. NAACL. [Pdf] |
2019 Kharlamov, E., Kotidis, Y., Mailis, T., Neuenstadt, C., Nikolaou, C., Ozcep, O., Christoforos Svingos, C., Zheleznyakov, D., Ioannidis, Y., Lamparter, S., & Moller, R. (2019). An Ontology-Mediated Analytics-Aware Approach to Support Monitoring and Diagnostics of Static and Streaming Data. SSRN Electronic Journal, 1–34. [Pdf] |
2019 Klungre, V. N., Soylu, A., Jimenez-Ruiz, E., Kharlamov, E., & Giese, M. (2019). Query Extension Suggestions for Visual Query Systems Through Ontology Projection and Indexing. New Generation Computing, 37(4), 361–392. [Pdf] |
2019 Koch, M., Spies, M., & Bürger, M. (2019). Trust Regions for Safe Sampling-Based Model Predictive Control. ICRA. [Pdf] |
2019 Köhler, J., Autenrieth, M., & Beluch, W. (2019). Uncertainty Based Detection and Relabeling of Noisy Image Labels. CVPR. [Pdf] |
2019 Kusumoto, R., Palmieri, L., Spies, M., Csiszar, A., & Arras, K. O. (2019). Informed Information Theoretic Model Predictive Control. ICRA. [Pdf] |
2019 Lange, L., Adel, H., & Stroetgen, J. (2019). NLNDE: Enhancing Neural Sequence Taggers with Attention and Noisy Channel for Robust Pharmacological Entity Detection. BioNLP. [Pdf] |
2019 Lange, L., Adel, H., & Strötgen, J. (2019). NLNDE: The Neither-Language-Nor-Domain-Experts’ Way of Spanish Medical Document De-Identification. IberLEF. [Pdf] |
2019 Lange, L., Alonso, O., & Strötgen, J. (2019). The Power of Temporal Features for Classifying News Articles. TempWeb. [Pdf] |
2019 Lange, L., Hedderich, M. A., & Klakow, D. (2019). Feature-Dependent Confusion Matrices for Low-Resource NER Labeling with Noisy Labels. EMNLP. [Pdf] |
2019 Li, B., Schmidt, F. R., & Kolter, Z. (2019). Adversarial camera stickers: A physical camera-based attack on deep learning systems. ICML. [Pdf] |
2019 Li, J., Qu, S., Li, X., Szurley, J., Kolter, J. Z., & Metze, F. (2019). Adversarial Music: Real world Audio Adversary against Wake-word Detection System. NeurIPS. [Pdf] |
2019 Look, A., & Kandemir, M. (2019, December). Differential Bayesian Neural Nets [Workshop: Poster]. NeurIPS, Vancouver, Canada. [Pdf] |
2019 Louizos, C., Shi, X., & Welling, M. (2019). The Functional Neural Process. NeurIPS. [Pdf] |
2019 Mailis, T., Kotidis, Y., Nikolopoulos, V., Kharlamov, E., Horrocks, I., & Ioannidis, Y. (2019a). An Efficient Index for RDF Query Containment. SIGMOD. [Pdf] |
2019 Mailis, T., Kotidis, Y., Nikolopoulos, V., Kharlamov, E., Horrocks, I., & Ioannidis, Y. (2019b). Mv-index: An Efficient Index for Graph-Query Containment. ISWC. [Pdf] |
2019 Manek, G., & Kolter, J. Z. (2019). Learning Stable Deep Dynamics Models. NeurIPS. [Pdf] |
2019 McHardy, R., Adel, H., & Klinger, R. (2019). Adversarial Training for Satire Detection: Controlling for Confounding Variables. NAACL. [Pdf] |
2019 Mehdi, A., Kharlamov, E., Stepanova, D., Loesch, F., & Gonzales, I. G. (2019). Towards Semantic Integration of Bosch Manufacturing Data. ISCW (Industry Track). [Pdf] |
2019 Mettes, P., van der Pol, E., & Snoek, C. (2019). Hyperspherical Prototype Networks. NeurIPS. [Pdf] |
2019 Mummadi, C. K., Brox, T., & Metzen, J. H. (2019). Defending against universal perturbations with shared adversarial training. ICCV. [Pdf] |
2019 Nagarajan, V., & Kolter, J. Z. (2019). Uniform convergence may be unable to explain generalization in deep learning. NeurIPS. [Pdf] |
2019 Nguyen, D. T., Dax, M., Mummadi, C. K., Ngo, N., Hoai, T., Nguyen, P., Lou, Z., & Brox, T. (2019). DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision. NeurIPS. [Pdf] |
2019 Patel, K., Rambach, K., Visentin, T., Rusev, D., Pfeiffer, M., & Yang, B. (2019). Deep Learning-based Object Classification on Automotive Radar Spectra. IEEE Radar. [Pdf] |
2019 Rozo, L. (2019). Interactive Trajectory Adaptation through Force-guided Bayesian Optimization. IROS. [Pdf] |
2019 Savkovic, O., Kharlamov, E., & Lamparter, S. (2019). Validation of SHACL Constraints over KGs with OWL 2 Ontologies via Rewriting. ESWC. [Pdf] |
2019 Schönfeld, E., Ebrahimi, S., Sinha, S., Darrall, T., & Akata, Z. (2019). Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders. CVPR. [Pdf] |
2019 Schwab, M., Jäschke, R., Fischer, F., & Stroetgen, J. (2019). “A Buster Keaton of Linguistics”: First Automated Approaches for the Extraction of Vossian Antonomasia. EMNLP. [Pdf] |
2019 Schwenkel, L., Guo, M., & Bürger, M. (2019). Optimizing Sequences of Probabilistic Manipulation Skills Learned from Demonstration. CoRL. [Pdf] |
2019 Silverio, J., Huang, Y., Abu-dakka, F., Rozo, L., & Caldwell, D. G. (2019). Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives. IROS. [Pdf] |
2019 Spies, M., Todescato, M., Becker, H., Kesper, P., Waniek, N., & Guo, M. (2019). Bounded Suboptimal Search with Learned Heuristics for Multi-Agent Systems. AAAI. [Pdf] |
2019 Trouleau, W., Etesami, J., Grossglauser, M., Kiyavash, M., & Thiran, P. (2019). Learning Hawkes Processes Under Synchronization Noise. ICML. [Pdf] |
2019 Wagner, J., Köhler, J. M., Gindele, T., Hetzel, L., Wiedemer, J. T., & Behnke, S. (2019). Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks. CVPR. [Pdf] |
2019 Wang, P.-W., Donti, P., Wilder, B., & Kolter, Z. (2019). SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. ICML. [Pdf] |
2019 Wang, X., Chen, J., Li, S., Cheng, G., Pan, J. Z., Kharlamov, E., & Qu, Y. (2019). A Framework for Evaluating Snippet Generation for Dataset Search. ISWC. [Pdf] |
2019 Wang, X., Cheng, G., & Kharlamov, E. (2019). Towards Multi-Facet Snippets for Dataset Search. PROFILES. [Pdf] |
2019 Waniek, N. (2020). Transition Scale-Spaces: A Computational Theory for the Discretized Entorhinal Cortex. Neural Computation, 32(2), 330–394. [Pdf] |
2019 Wong, E., Schmidt, F. R., & Kolter, Z. (2019). Wasserstein Adversarial Examples via Projected Sinkhorn Iterations. ICML. [Pdf] |
2019 Zafar, M. B., Valera, I., Gomez-Rodriguez, M., & Gummadi, K. P. (2019). Fairness Constraints: A Flexible Approach for Fair Classification. Journal of Machine Learning Research 20, 1–42. [Pdf] |
2019 Zhang, D., & Khoreva, A. (2019). Progressive Augmentation of GANs. NeurIPS. [Pdf] |
2019 Zheleznyakov, D., Kharlamov, E., Nutt, W., & Calvanese, D. (2019). On Expansion and Contraction of DL-Lite Knowledge Bases. SSRN Electronic Journal, 1–23. [Pdf] |
2018 |
---|
2018 Achterhold, J., Köhler, J. M., Schmeink, A., & Genewein, T. (2018). Variational Network Quantization. ICLR. [Pdf] |
2018 Agarwal, P., Strötgen, J., del Corro, L., Hoffart, J., & Weikum, G. (2018). diaNED: Time-Aware Named Entity Disambiguation for Diachronic Corpora. ACL. [Pdf] |
2018 Beggel, L., Kausler, B. X., Schiegg, M., Pfeiffer, M., & Bischl, B. (2018). Time series anomaly detection based on shapelet learning. Computational Statistics, 34(3), 945–976. [Pdf] |
2018 Conner D.C. et al. (2018) Collaborative Autonomy Between High-Level Behaviors and Human Operators for Control of Complex Tasks with Different Humanoid Robots. In: Spenko M., Buerger S., Iagnemma K. (eds) The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer Tracts in Advanced Robotics, vol 121. Springer, Cham. [Pdf] |
2018 Domokos, C., Schmidt, F. R., & Cremers, D. (2018). MRF Optimization with Separable Convex Prior on Partially Ordered Labels. ECCV. [Pdf] |
2018 Domokos, C., Schmidt, F. R., & Cremers, D. (2018). MRF Optimization with Separable Convex Prior on Partially Ordered Labels. ECCV. [Pdf] |
2018 Estellers, V., Schmidt, F. R., & Cremers, D. (2018). Robust Fitting of Subdivision Surfaces for Smooth Shape Analysis. 3DV. [Pdf] |
2018 Etesami, J., Habibnia, A., & Kiyavash, N. (2018). Econometric Modeling of Systemic Risk: A Time Series Approach. KDD. [Pdf] |
2018 Fischer, V., Pfeil, T., & Köhler, J. (2018). The streaming rollout of deep networks - towards fully model-parallel execution. NIPS. [Pdf] |
2018 Gutzeit, L., Fabisch, A., Otto, M., Metzen, J. H., Hansen, J., Kirchner, F., & Kirchner, E. A. (2018). The BesMan Learning Platform for Automated Robot Skill Learning. Frontiers in Robotics and AI, 5, para. 1. [Pdf] |
2018 Pfeiffer, M., & Pfeil, T. (2018). Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience, 12, para. 1. [Pdf] |
2018 Reeb, D., Doerr, A., Gerwinn, S. & Rakitsch, B. (2018). Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds. NeurIPS.[Pdf] |
2018 Salehkaleybar, S., Etesami, J., Kiyavash, N., & Zhang, K. (2018). Learning Vector Autoregressive Models with Latent Processes. AAAI. [Pdf] |
2018 Tayeb, Z., Waniek, N., Fedjaev, J., Ghaboosi, N., Rychly, L., Widderich, C., Richter, C., Braun, J., Saveriano, M., Cheng, G., & Conradt, J. (2018). Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces. Journal of Neural Engineering, 15(6), 65003. [Pdf] |
2018 Waniek, N. (2018). Hexagonal Grid Fields Optimally Encode Transitions in Spatiotemporal Sequences. Neural Computation, 30(10), 2691–2725. [Pdf] |
2018 Wong, E., Schmidt, F. R., Metzen, J. H., & Kolter, Z. (2018). Scaling provable adversarial defenses. NIPS. [Pdf] |
2018 Zimmer, C., Meister, M. & Nguyen-Tuong, D. (2018). Safe Active Learning for Time-Series Modeling with Gaussian Processes. NeurIPS. [Pdf] |
2017 |
---|
2017 Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., & Trimpe, S. (2017). Optimizing Long-term Predictions for Model-based Policy Search. CoRL. [Pdf] |
2017 Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., & Trimpe, S. (2017). Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers. ICRA. [Pdf] |
2017 Fischer, V., Kumar, M. C., Metzen, J. H., & Brox, T. (2017). Adversarial examples for semantic image segmentation. ICLR. [Pdf] |
2017 Gondal, W. M., Köhler, J. M., Grzeszick, R., Fink, G. A., & Hirsch, M. (2017). Weakly-Supervised Localization of Diabetic Retinopathy Lesions in Retinal Fundus Images. ICIP. [Pdf] |
2017 Heit, J., Liu, J., & Shah, M. (2017). An Architecture for the Deployment of Statistical Models for the Big Data Era. IEEE. [Pdf] |
2017 Meister, M., & Steinwart, I. (2017). Optimal Learning Rates for Localized SVMs. JMLR. [Pdf] |
2017 Metzen, J. H., Genewein, T., Fischer, V., & Bischoff, B. (2017). On Detecting Adversarial Perturbations. ICLR. [Pdf] |
2017 Metzen, J. H., Kumar, M. C., Brox, T., & Fischer, V. (2017). Universal Adversarial Perturbations Against Semantic Image Segmentation. ICCV. [Pdf] |
2017 Schillinger, M., Hartmann, B., Skalecki, P., Meister, M., Nguyen-Tuong, D., & Nelles, O. (2017). Safe Active Learning and Bayesian Optimization for Tuning a PI-Controller. IFAC. [Pdf] |
2017 Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2017). Multi-objective search for optimal multi-robot planning with finite LTL specifications and resource constraints. ICRA. [Pdf] |
2017 Wagner, J., Fischer, V., Herman, M., & Behnke, S. (2017). Learning Semantic Prediction using Pretrained Deep Feedforward Networks. ESANN. [Pdf] |
2017 Zhang, S., Bahrampour, S., & Ramakrishnan, N. (2017). Deep learning on symbolic representations for large-scale heterogeneous time-series event prediction. IEEE Xplore. [Pdf] |
2016 |
---|
2016 Daniel, C., van Hoof, H., Peters, J., & Neumann, G. (2016). Probabilistic inference for determining options in reinforcement learning. Machine Learning, 104(2–3), 337–357. [Pdf] |
2016 Dhar, S., Naveen, N., Cherkassky, V., & Shah, M. (2016). Universum Learning for Multiclass SVM. SVM. [Pdf] |
2016 Hartmann, B., Kloppenburg, E., Heuser, P., & Diener, R. (2016). Online-Methods for Engine Test Bed Measurements Considering Engine Limits. ISSAM. [Pdf] |
2016 Heit, J., Liu, J., & Shah, M. (2016a). An Architecture for the Deployment of Statistical Models for the Big Data Era. IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7840745&tag=1 |
2016 Heit, J., Liu, J., & Shah, M. (2016b). An architecture for the deployment of statistical models for the big data era. IEEE. [Pdf] |
2016 Herman, M., Gindele, T., Wagner, J., Schmitt, F., & Burgard, W. (2016a). Inverse Reinforcement Learning with Simultaneous Estimation of Rewards and Dynamics. AISTATS. [Pdf] |
2016 Herman, M., Gindele, T., Wagner, J., Schmitt, F., & Burgard, W. (2016b). Simultaneous Estimation of Rewards and Dynamics from Noisy Expert Demonstrations. ESANN. [Pdf] |
2016 Koerts, F., Bürger, M., van der Schaft, A., & De Persis, C. (2016). Stability Analysis of Networked Systems Containing Damped and Undamped Nodes. ACC. [Pdf] |
2016 Metzen, J. H. (2016). Minimum Regret Search for Single- and Multi-Task Optimization. ICML. [Pdf] |
2016 Peters, J., Lee, D. D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., & Schaal, S. (2016). Robot Learning (Handbook ed.). Springer, Cham. [Pdf] |
2016 Schiegg, M., Diego, F., & Hamprecht, F. A. (2016). Learning Diverse Models: The Coulomb Structured Support Vector Machine. ECCV. [Pdf] |
2016 Schillinger, M., Ortelt, B., Hartman, B., Schreiter, J., Meister, M., & Nelles, O. (2016). Safe Active Learning of High Pressure Fuel Supply Systems. EUROSIM. [Pdf] |
2016 Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2016). Decomposition of Finite LTL Specifications for Efficient Multi-Agent Planning. DARS. [Pdf] |
2016 Schmitt, F., Bieg, H.-J., Manstetten, D., Herman, M., & Stiefelhagen, R. (2016). Predicting Lane Keeping Behavior of Visually Distracted Drivers Using Inverse Suboptimal Control. IV. [Pdf] |
2016 Schreiter, J., Nguyen-Tuong, D., & Toussaint, M. (2016). Efficient Sparsification for Gaussian Process Regression. Neuro Comp. [Pdf] |
2016 Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Schmidt, H., Romer, A., & Peters, J. (2016). Stability of Controllers for Gaussian Process Forward Models. ICML. [Pdf] |
2016 Wagner, J., Fischer, V., Herman, M., & Behnke, S. (2016). Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks. ESANN. [Pdf] |
2015 |
---|
2015 Dhar, S., Ramakrishnan, C. Y. N., & Shah, M. (2015). ADMM based Scalable Machine Learning on Spark. ADMM. [Pdf] |
2015 Herman, M., Fischer, V., Gindele, T., & Burgard, W. (2015). Inverse Reinforcement Learning of Behavioral Models for Online-Adapting Navigation Strategies. ICRA. [Pdf] |
2015 Schreiter, J., Englert, P., Nguyen-Tuong, D., & Toussaint, M. (2015). Sparse Gaussian Process Regression for Compliant, Real-time Robot Control. ICRA. [Pdf] |
2015 Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., & Toussaint, M. (2015). Safe Exploration for Active Learning with Gaussian Processes. ECML. [Pdf] |
2014 |
---|
2014 Bischoff, B., Nguyen-Tuong, D., Koller, T., Markert, H., & Knoll, A. (2014). Learning Throttle Valve Control Using Policy Search. ECML. [Pdf] |
2014 Bischoff, B., ERROR: No link has been specified!, van Hoof, H., McHutchon, A., Rasmussen, C. E., Knoll, A., Peters, J., & Deisenroth, M. P. (2014). Policy Search for Learning Robot Control Using Sparse Data. ICRA. [Pdf] |
2014 Tietze, N., Konigorski, U., Fleck, C., & Nguyen-Tuong, D. (2014). Model-based Calibration of Engine Controller Using Automated Transient Design of Experiment. ISSAM. [Pdf] |
2013 |
---|
2013 Bischoff, B., Markert, H., Knoll, A., & Nguyen-Tuong, D. (2013). Solving the 15-Puzzle Game Using Local Value-Iteration. SCAI. [Pdf] |
2013 Bischoff, B., Nguyen-Tuong, D., Markert, H., & Knoll, A. (2013). Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach. ESANN. [Pdf] |
2013 Bischoff, B., Nguyen-Tuong, D., Lee, I.-H., Streichert, F., & Knoll, A. (2013). Hierarchical Reinforcement Learning for Robot Navigation. ESANN. [Pdf] |
2012 |
---|
2012 Bischoff, B., Nguyen-Tuong, D., Streichert, F., Ewert, M., & Knoll, A. (2012). Fusing Vision and Odometry for Accurate Indoor Robot Localization. ICARCV. [Pdf] |
2012 ERROR: No link has been specified!, & Peters, J. (2012). Online Kernel-Based Learning for Task-Space Tracking Robot Control. TransNN. [Pdf] |